Re-Exam 1, Module 7, Code 201600270 Discrete Structures & Efficient Algorithms Tuesday, April 18, 2017, 08:45 - 11:45

All answers need to be motivated. No calculators. You are allowed to use a handwritten cheat sheet (A4) per topic (ADS, DM, L&M).

This exam consists of three parts, with the following (estimated) time requirements:

Algorithms & Data Structures (ADS)	1h	(30 points)
Discrete Mathematics (DW)	1h 20 min	(40 points)
Languages & Machines (L&M)	40 min	(20 points)

Total 30+40+20=90 points. Your exam grade is the total number of points plus 10, divided by 10.

Please use a new sheet of paper for each part (ADS/DM/L&M)!

Algorithms & Data Structures

1. (10 points) Given an integer array a with length $n = 2^k$ for some k > 0. Consider the following algorithm for determining the maximum and the minimum:

```
(int, int) minmax( int a[1], ..., a[n])
{ if (n==2)
    { if (a[1]<=a[2]) return (a[1],a[2]); else return (a[2],a[1])
    }
    else { (mn1,mx1) = minmax(a[1], ..., a[n/2]);
        (mn2,mx2) = minmax(a[n/2+1], ..., a[n]);
        return(min(mn1,mn2), max(mx1,mx2));
    }
}</pre>
```

(a) Give a recursive expression for the number of comparisons of this algorithm.

(b) Give the asymptotic time complexity of this algorithm.

2. (10 points)

- (a) Give an efficient algorithm that deletes the maximum of a maxheap (the result should again be a maxheap). What is de time complexity of your algorithm?
- (b) Given a nonempty binary search tree with unique elements. Give an algorithm that determines the biggest element smaller that the maximum element (and explain your solution).
- 3. (10 points) A mechanic has a list of n jobs he has to perform. He has made an estimate of the time t_i (an integer) he needs to finish each job i. He wants to work tomorrow at least T minutes: certainly not less, maybe a bit longer, but preferably as little longer as possible.
 - (a) The function B(i, t) indicates the amount of extra time for an optimal choice of jobs from k_i, \ldots, k_n if you want to work for at least t minutes. Explain that

- B(i,0) = 0 for $1 \le i \le n+1$
- $B(n+1,t) = \infty$ if t > 0
- $B(i,t) = min(t_i t, B(i+1,t))$ if $t_i \ge t$
- $B(i, t) = min(B(i + 1, t t_i), B(i + 1, t))$ otherwise
- (b) Give an algorithm that determines the minimal amount of extra time if you want to work for T mintes. Use dynamic programming, based on the equations for function B(i, t).

Discrete Mathematics

- 4. (5 points) Show that the Diophantine equation 236s + 24t = 2 has no solution for $s, t \in \mathbb{Z}$.
- 5. (10 points)
 - (a) Let us denote by a_n the number of strings in $\{a, b, c\}^*$ of length n that contain an even number of a's. Compute a_1 , a_2 , and give a recurrence relation for a_n , $n \ge 3$. (You do not have to solve the recurrence relation.)
 - (b) Compute the solution to the recurrence relation

 $a_n - 6a_{n-1} + 9a_{n-2} = 4n + 4$ $(n \ge 2)$ with $a_0 = 5$ and $a_1 = 9$.

- 6. (8 points) Suppose we are given a capacitated network G = (V, A, c), where V is the set of vertices, A is the set of (directed) arcs, and c_a ≥ 0, a ∈ A are the arc capacities. Also, let s, t ∈ V and f = (f_a)_{a∈A} be a feasible flow in G. Give a short proof or give a counterexample for each of the following statements.
 - (a) There is a maximal (s,t)-flow f such that $f_a = 0$ or $f_a = c_a$ for all $a \in A$.
 - (b) A minimal (s, t)-cut in G is unique if all capacities c_a are pairwise distinct.
 - (c) Multiplying each of the capacities c_a by one and the same number $\lambda > 0$ does not change the minimal (s, t)-cuts.
 - (d) Adding one and the same number $\lambda > 0$ to each of the capacities c_a does not change the minimal (s, t)-cuts.
- 7. (5 points) Suppose you are given an undirected (simple) graph G = (V, E) with |E| = 35, and $d(v) \ge 5$ for all $v \in V$. How many nodes can the graph possibly have? (Give both a min. and a max.)
- 8. (7 points) Let G = (V, E) be a simple, undirected graph with edge lengths $d_e \ge 0$, $e \in E$. Let $T \subseteq E$ be an arbitrary minimal spanning tree (MST) for G. Also, for a given $s \in V$ let D_s be the union of *all* shortest (s, v)-paths, for all $v \in V \setminus \{s\}$. Show that $T \cap D_s \neq \emptyset$.
- 9. (5 points) How many possibilities are there to select six nonconsecutive numbers from the set $\{1, 2, \ldots, 50\}$? Use a generating function.

Languages & Machines

10. (10 points) Consider the following NFA, M (only q_1 is accepting):

in the second of the second of the

- (a) Provide the input-transition function of M in a table.
- (b) Transform the automaton M systematically into an (incomplete) DFA.
- (c) Construct systematically a regular expression E with $\mathcal{L}(E) = \mathcal{L}(M)$.

11. (10 points) Consider the following languages:

- language $L_1 := \{a^k b^{2j} \mid k \ge j \ge 0\}$
- language $L_2 := \{a^k \, b^{2j} \mid j \geq k \geq 0\}$

Indicate whether the following languages are regular or not. Prove your answers.

- (a) The language $L_1 \cup L_2$ (union).
- (b) The language $L_1 \cap L_2$ (intersection).