Kenmerk: EWI2019/TW/DMMP/MU/Mod7/Re-Exam1

## Re-Exam 1, Module 7, Codes 201400483 & 201800141 Discrete Structures & Efficient Algorithms Tuesday, April 16, 08:45 - 11:45

All answers need to be motivated. No calculators. You are allowed to use a handwritten cheat sheet (A4, both sides) per topic (ADS, DM).

This exam consists of two parts, with the following (estimated) times per part:

Algorithms & Data Structures (ADS) ca. 1h (30 points) Discrete Mathematics (DM) ca. 2h (60 points)

The total is 30+60=90 points. Your exam grade is 1 plus and the total number of points multiplied by 0.1 (= 9/90), rounded to one digit.

Important: It is necessary to use a new sheet of paper for each part (ADS and DM)!

## Algorithms & Data Structures

1. (10 points)

Consider this sorting algorithm that sorts from a sequence A of integers the segment  $A[i, \ldots, j]$  where  $1 \le i \le j$ :

```
def sort(A,i,j):
    if A[i]>A[j] : A[i],A[j]=A[j],A[i]
    if i+1>=j : return
    k=(j-i+1)//3
    sort(A,i,j-k)
    sort(A,i+k,j)
    sort(A,i,j-k)
```

- (a) Determine the asymptotic worst-case complexity for sort to sort n > 0 numbers. Take as basic operation the comparison of elements of A.
- (b) Under which circumstances would you prefer *sort* over quicksort, insertion sort, mergesort or heapsort?
- 2. (5 points)
  - (a) Where is the smallest element in a maxheap?
  - (b) Given an array A sorted in decreasing order. Give an efficient algorithm that turns A into a heap.

## 3. (5 points)

Given the following binary tree:



Write down (as a string of letters) the order of the nodes you encounter for the preorder, inorder, and postorder traversal of the tree.

- 4. (10 points) Given a  $M \times N$  matrix where each cell has a cost associated to it. We are interested in the minimum cost to reach cell (M-1,N-1) starting from cell (0,0) where you can only move one unit right or one down from any cell, i.e. from cell (i,j) you can move to (i,j+1) or (i+1,j).
  - (a) We want to fill a matrix T such that T(i,j) contains the minimum cost for going from (0,0) to (i,j). Explain that for j>0, T(0,j)=cost(0,j)+T(0,j-1), and for i>0, T(i,0)=cost(i,0)+T(i-1,0). Give an expression for T(i,j) for i,j>0.
  - (b) Give an algorithm that gives the minimum cost for going from (0,0) to (M-1,N-1). The algorithm should have complexity not bigger than  $\Theta(MN)$ .

## **Discrete Mathematics**

- 5. (10 points)
- (a) By using the Euclidean algorithm, show that 708s + 72t = 4 has no solution for  $s, t \in \mathbb{Z}$ .
  - (b) Let a and b be coprime, and  $a > b \ge 0$ . Define  $d := \gcd(a b, a + b)$ . Show that  $d \le 2$ .
  - 6. (10 points)
    - (a) Let us denote by  $a_n$  the number of strings in  $\{0,1,2\}^*$  of length n where there are no consecutive 1's and no consecutive 2's. Compute  $a_1$  and  $a_2$ , and set up a recurrence relation for  $a_n$  ( $n \ge 3$ ). You do not need to solve this recurrence relation.

(b) Compute the solution to the recurrence relation

$$a_n - 6a_{n-1} + 9a_{n-2} = 4n + 4 \quad (n \ge 2)$$
 with  $a_0 = 5$  and  $a_1 = 9$ .

7. (10 points)

6

10

- (a) Suppose we want to donate  $100 \in$  to three charity organizations  $C_1$ ,  $C_2$ ,  $C_3$ , such that each of them gets at least  $20 \in$ , but at most  $50 \in$ , and moreover each organization gets an integer amount. How many different possibilities are there to do that? Use a generating function to compute your answer.
- (b) If the question is to count the number of different possibilities of splitting up 100€ into three parts, such that each part is an integer amount, at least 20€ and at most 50€, is the answer
  - smaller than
  - · larger than
  - equal to

the answer in (a)?

- 8. (10 points) Let G=(V,E) be a simple, connected, undirected graph with |V|=n and |E|=m without a bridge. Show that, if at least half of the nodes of G have a degree at least 10, then G cannot be planar.
- 9. (14 points) Suppose we are given a capacitated network G=(V,E,c), where V is the set of vertices, E is the set of (directed) edges, and  $c(e)\geq 0$ ,  $e\in E$  are the arc capacities. Also, let  $s,t\in V$  and  $f:E\to\mathbb{R}$  be a feasible flow in G. Give a short proof or give a counterexample:
  - (a) Multiplying each of the capacities c(e) by a number  $\lambda > 0$  does not change set of minimal (s,t)-cuts.
  - (b) Adding a number  $\mu>0$  to each of the capacities  $c_a$  does not change the set of minimal (s,t)-cuts.

Now consider an undirected graph G=(V,E) with integer arc weights  $w(e)\geq 0,\ e\in E.$  Give a short proof or give a counterexample:

- (c) If  $T_1$  and  $T_2$  are two minimum spanning trees for G, then  $\max\{w_e \mid e \in T_1\} = \max\{w_e \mid e \in T_2\}$ .
- (d) If  $T_1$  and  $T_2$  are two minimum spanning trees for G, then  $T_1 \cap T_2 \neq \emptyset$ .
- 10. (6 points) Consider a simple, capacitated network G=(V,E,c), where V is the set of nodes,  $s,t\in V$ , E is the set of directed edges, and  $c(e)\geq 0$  for  $e\in E$  are the edge capacities. Let n=|V| and m=|E|. Suppose you are given a maximum (s,t)-flow f for G. Suggest how to compute a minimum (s,t)-cut (S,T) for G in computation time O(n+m).