Kenmerk: EWI2021/TW/MOR/MU/Mod7/Exam1

Exam 1, Module 7, Codes 202001360 & 202001364 Discrete Structures & Efficient Algorithms Friday, March 25, 2022, 13:45 - 16:45

Answers to questions 1-8 need to be motivated, arguments and proofs must be complete. You are allowed to use a handwritten cheat sheet (one A4, both sides) per topic (ADS, DM) during the exam.

For information: This exam consists of two parts, with the following (estimated) times per part:

Algorithms & Data Structures (ADS) ca. 1h (30 points) Discrete Mathematics (DM) ca. 2h (60 points)

The total is 30+60=90 points. Your grade is 1+0.1x, x being the number of points, rounded to one digit. That means, you need 45 points to get a 5.5.

Please use a new sheet of paper for each part (ADS, DM), as the ADS and DM parts will be corrected separately!

Double students Discrete Mathematics & Algebra (202001364) only do the DM part. In that case, please write "Discrete Mathematics & Algebra" on top of your exam.

Algorithms & Data Structures

- 1. (10 points)
 - (a) Consider this sorting algorithm that sorts an array arr of integers:

```
def Sort(arr):
    n = len(arr)

for i in range(n-1):
    for j in range(0, n-i-1):

    if arr[j] > arr[j+1] :
        arr[j], arr[j+1] = arr[j+1], arr[j]
```

Give the asymptotic time complexity of this algorithm, expressed in the number of comparisons. Is this an in-place algorithm?

(b) Give the asymptotic order of the solution of the following recurrence equation:

$$T(n) = 4 \cdot T(n/2) + n^3$$

2. (10 points)

(a) Turn the following array into a maxheap, and explain your steps:

(b) Give a completely filled binary tree of depth 3, where each node has as a (unique) key one of the numbers from 1 to 15, in such a way that the tree is sorted in-order.

What is the order in which you encounter the numbers if you traverse this tree in an pre-order way?

3. (10 points)

Given a backpack with maximum weight capacity G. Given n objects 1 to n where each object i has weight w_i . Suppose all weights are integers. The goal is to fill the backpack with objects, with as much weight as possible.

- (a) Suppose at a certain point you are considering objects 1 to i, and you still have weight g available in the backpack. Define R(i,g) as the remaining (unused) weight of the backpack if you have packed as much weight as possible adding objects from 1 to i. Motivate which of the following recurrence relations holds:
 - i. $R(i,g) = w_i + max\{R(i-1,g), R(i,g-1)\}$
 - ii. $R(i,g) = min\{R(i-1,g), R(i-1,g-w_i)\}$
 - iii. $R(i,g) = w_i + min\{R(i-1,g), R(i,g)\}$
 - iv. $R(i,g) = min\{R(i-1,g), R(i,g-w_i)\}$
- (b) Give an algorithm to determine the maximum weight that can be put into the backpack. The complexity may be no worse that quadratic in n.

Reminder: Please use a new sheet of paper for each part (ADS, DM), as the ADS and the DM parts will be corrected separately!

Discrete Mathematics

- 4. (5+3+2 points)
 - (a) Consider the Diophantine equation

$$30 = 141x + 34y.$$

Use the extended Euclidean algorithm to either compute an integer solution $x,y\in\mathbb{Z}$, or show that no such solution is possible.

- (b) Consider $a,b,c\in\mathbb{Z}$ with $\gcd(a,b)=1$ and a|bc. Prove that a|c.
- (c) Prove that $gcd(F_n, F_{n-1}) = 1$ where F_n is the n'th Fibonacci number. (Hint: You may want to use mathematical induction.)

¹Reminder: The Fibonacci numbers are defined by the recurrence relation $F_0=0$, $F_1=1$, and for all $n\geq 0$, $F_{n+2}=F_{n+1}+F_n$.

5.	(7 points) Prove that any tree $T=(V,E)$ with maximum degree k must have at least k vertices with degree 1 . (Hint: You may use the fact that every tree $T=(V,E)$ with $ V \geq 2$, has at least two vertices of degree 1 .)
6.	(7 points) Consider a graph $G=(V,E)$ with edge costs $c(e),e\in E$ such that all edge costs are distinct (i.e., for any $e,e'\in E, c(e)=c(e')$ implies that $e=e'$). Prove that in this case there exists a unique minimum spanning tree T in G . (Hint: Proof by contradiction.)
7.	(7 points) Consider a simple, capacitated network $G=(V,E,c)$, where V is the set of vertices, $s,t\in V$, E is the set of directed edges, and $c(e)\geq 0$ for $e\in E$ are the edge capacities. Let $ V =n$ and $ E =m$. Suppose you are given a maximum (s,t) -flow f . Suggest how to compute a minimum (s,t) -cut $[S,T]$ for G in time $O(n+m)$. Briefly explain (i) why your suggested algorithm is correct (ii) why it achieves the desired running time. (Hint: You may want to use the residual graph for G and the maximum (s,t) -flow.)
8.	(3+4+4 points)
	(a) There are n seating positions placed in a line. Consider the seating arrangements (i.e., subsets of the n seating positions) that do not contain any consecutive seats. Prove that the number of such arrangements is F_{n+1} , where F_n is the n 'th Fibonacci number.
	(b) Give a recurrence relation for the number of seating arrangements if the n seating positions are placed around a circle, $n \geq 3$, and again consecutive seats are disallowed. Explain why your recurrence relation is correct.
	(c) Compute the solution to the recurrence relation
	$a_{n+2} - 7a_{n+1} + 10 = 0$, $n \ge 0$, with $a_0 = 0$ and $a_1 = 3$.
9.	(3 points each) For each of the following six claims, decide if true or false or if you would rather not give an answer. A correct answer gives 3, an incorrect answer -2 and not giving an answer 0 points (minimum total number of points for Question 9 is 0 points). Instead of guessing, it may be better not giving an answer.
	(a) The complete bipartite graph $K_{m,n}$ contains an Euler tour if and only if both m and n are even.
	True
	(b) Consider a graph $G=(V,E)$ and a minimum spanning tree T on G . Then for every pair of vertices $u,w\in V$, the shortest (u,w) -path in G is contained in T .
	True

(c) Consider a capacitated network $G=(V,E,c)$, where $s,t\in V$, E is the set of directed edges, and $c(e)\geq 0$, $e\in E$, are the integer edge capacities. When adding the same integer $k>0$ to all the capacities $c(e)$, we still have the same set of minimal (s,t) -cuts (only with larger total capacity).
True
(d) The following graph G is planar.
True
(e) The generating function for the sequence $1,0,1,0,1,0,1,\ldots$ is
$f(x) = \frac{1}{1 - x^2}.$
True
(f) The coefficient of x^{50} in $(x^7 + x^8 + x^9 + \dots)^6$ is $\binom{14}{8}$.
True