Name: Student number:

2nd Re-Exam 2, Module 7, Study Unit 202001361 Languages & Machines Tuesday, June 1, 2021, 18:15 - 20:15

This second exam of Module 7 consists of the Languages & Machines part only, and is a 2h exam.

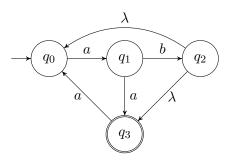
You are allowed to use a handwritten cheat sheet (A4, double sided) during the exam.

After you finished your exam, take pictures of all pages and upload them as **one** PDF to the canvas assignment for this exam.

If you intend to leave before 20:15, then quietly come with your exam to the front and take the pictures there. Otherwise, please wait for our announcement at the end of the exam.

Exam sheet contains sample solution!

1. (8 points) Consider the following NFA- λ , M (only q_3 is accepting):



(a) Does the automaton accept the word aabaa?

If yes, provide a sequence of states with which the automaton can accept the word. If no, provide a sequence of states with which the automaton rejects the word. If the automaton rejects because there is no transition to a successor state with the according input, add "deadend" to the end of the sequence.

[\checkmark] No. A potential rejecting state sequence is:		$q_0,q_1,q_3,dead$	end
[] Yes. The sequence of states is:			

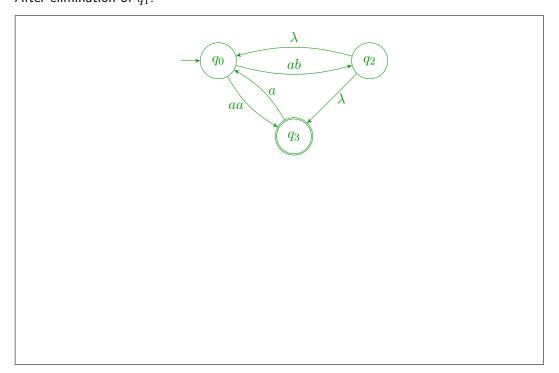
Does the automaton accept the word abab?

If yes, provide a sequence of states with which the automaton can accept the word. If no, provide a sequence of states with which the automaton rejects the word. If the automaton rejects because there is no transition to a successor state with the according

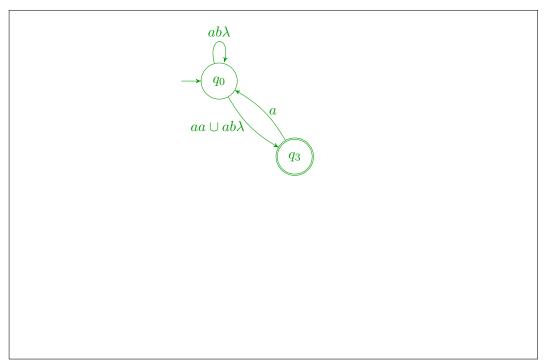
input, add "deadend" to the end of the sequence.

[] No. A potential state rejecting s	sequence is:
[\checkmark] Yes. The sequence of states is:	$q_0, q_1, q_2, q_0, q_1, q_2, q_3$

(b) Transform the automaton M step by step to a regular expression. States must be eliminated in the order $q_1,\ q_2.$ After elimination of q_1 :



After elimination of q_2



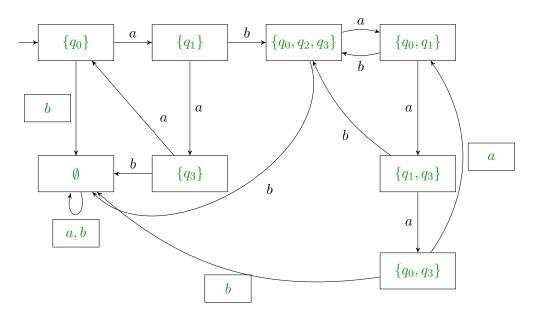
Thus, the regular expression obtained is:

 $((ab\lambda)^*(aa \cup ab\lambda))(a(ab\lambda)^*(aa \cup ab\lambda))^*$

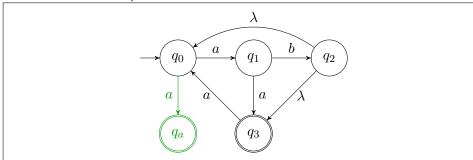
(c) Fill in the following table with the λ -closure and input-transition function of M.

	λ -closure	a	b
q_0	$\{q_0\}$	$\{q_1\}$	Ø
q_1	$\{q_1\}$	$\{q_3\}$	$\{q_0, q_2, q_3\}$
q_2	$\{q_0, q_2, q_3\}$	$\{q_0,q_1\}$	Ø
q_3	$\{q_3\}$	$\{q_0\}$	Ø

(d) The following incomplete DFA accepts the same language as ${\cal M}.$



- i. Mark the accepting state/the accepting states.
- ii. Label the states with the set of $\lambda\text{-NFA}$ states they represent.
- iii. Complete the white boxes at the transitions.
- (e) Modify the λ -NFA in the figure below such that the word "a" is also in its language (but no further new words).



Name: Student number:

2. (8 points) For each of the following languages, indicate whether it is

- A: regular
- B: context-free but not regular
- C: recursive but not context-free
- D: recursively enumerable but not recursive
- E: not recursively enumerable

For each correct answer, you will get 1 point. For each incorrect answer, you will loose 1 point. For no answer, you get 0 points. The total points of this exercise will not become negative.

No further explanation is required.

- [D] Language $L_1 := \{w \mid w \text{ encodes a Turing machine which writes sequence } abc \text{ for input } w\}$
- [A] Language $L_2 := \mathcal{L}(a^*b^*) \cap \mathcal{L}(a^*c^*)$
- [A] Language $L_3 := \{a^i b^j c^k \mid i \text{ even}, j \text{ mod } 3 = 0\}$
- [A] Language $L_4 := \{b^j c^{2i} b^j (cb)^i \mid 0 \le i \le 64 \text{ and } 0 \le j \le 3i\}$
- [C] Language $L_5 := \{a^i b^j c^k \mid 0 \le i \le j \le k\}$
- [B] Language $L_6 := \{a^{i+2} c b^{i+4} \mid 0 \le i\}$
- [C] Language $L_7 := \{a^i b^j a^{4i} b^{7j} \mid i \geq 0, j \geq 0\}$
- [D] Language $L_8 := \{ w \mid w \text{ encodes a Turing machine which always writes the sequence } def \}$

Name: Student number:

- 3. (5 points) Consider the following languages
 - $L_1 = \mathcal{L}(a^*b^*)$
 - $L_2 = \mathcal{L}(c^*d^*)$
 - $L_3 = \{w \in \{a, b\}^* \mid |w| = n^2 \text{ for some } n \ge 0\}$
 - $L_4 = \{w \in \{a, b\}^* \mid |w| \mod 3 = 0 \text{ and } |w| \mod 2 \neq 0\}$

Which of the following languages are regular? Mark languages for which this is the case with Y and mark those for which this does not hold with N. Leave out the answer if you do not know. Correct answers yield 1 point, for incorrect answers you loose 1 point. For no answer, you get 0 points. In total, you cannot get less than 0 points for this question.

- $[Y] L_2 \cap L_3$
- [Y] $L_1 \cup L_4$
- [N] $L_2 \cup L_3$
- [N] $L_3 \cup L_4$
- [Y] $\overline{L_4}$

4. (10 points) Consider the following context-free grammar G:

$$G = \left\{ \begin{array}{ll} S & \rightarrow & ABB \mid \lambda \mid AB \\ A & \rightarrow & Aaa \mid a \\ B & \rightarrow & Cab \\ C & \rightarrow & aC \mid a \end{array} \right.$$

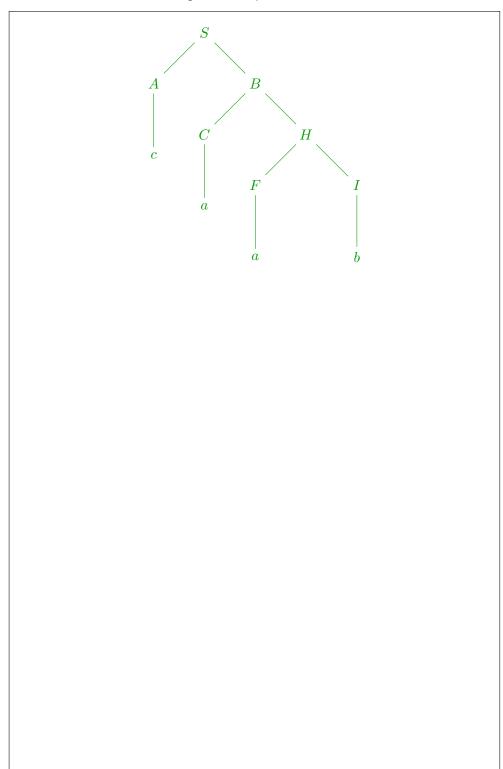
(a) Complete following grammar G' in Chomsky Normal form such that it is equivalent to G.

$$G' = \begin{cases} S & \rightarrow & AD \mid \lambda \mid AB \\ D & \rightarrow & BB \\ A & \rightarrow & EF \mid a \\ \hline E & \rightarrow & AF \\ \hline F & \rightarrow & a \\ B & \rightarrow & CH \\ \hline H & \rightarrow & FI \\ \hline I & \rightarrow & b \\ \hline C & \rightarrow & FC \mid a \end{cases}$$

(b) Let w=caab. Use the table below to apply the CYK-algorithm (after Cocke-Younger-Kasami) to decide whether $w \in \mathcal{L}(G')$. In case of empty sets, explicitly write " \emptyset ".

	1	2	3	4
1	$\{A\}$	$\{E\}$	$\{A\}$	$\{S\}$
2		$\{C,F\}$	$\{C\}$	{ <i>B</i> }
3			$\{C,F\}$	{ <i>H</i> }
4				$\{I\}$

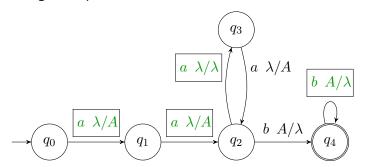
Use the results of the CYK-algorithm to provide a derivation tree of G^\prime for w:



- 5. (8 points) Consider the context-free language $L = \{a^{2i} b^{i+1} \mid i > 0\}$.
 - (a) Give a context-free grammar G in Greibach Normal form for L.

$$G = \begin{cases} S \rightarrow a A B B \\ A \rightarrow a A A B \mid a \\ B \rightarrow b \end{cases}$$

(b) Consider the following incomplete non-extended, deterministic PDA.



Complete the automaton such that it accepts L by filling the four white boxes. Note that we require this to be a deterministic, non-extended PDA. Only the symbol A may be pushed on the stack.

6. (5 points) Prove or disprove: the language $L:=\{a^ib^ic^i\mid i=|w| \text{ for some } w\in\mathcal{L}(a^*(ba)^*b)\}$ is context-free.

L is not context-free. We can prove this in almost the same way as for the language

$$X := \{a^i b^i c^i \mid i \ge 0\}$$

seen in the lecture. The reason that this works is basically that there are infinitely many words in $\mathcal{L}(a^*(ba)^*b)$ and thus the length of w is unbounded.

- Let k be arbitrarily given
- Choose $z=a^{k'}b^{k'}c^{k'}$ where k' is the smallest number larger or equal to k for which we have a word $w\in\mathcal{L}(a^*(ba)^*b)$ with k'=|w|
- Let uvwxy = z such that |vx| > 0 and $|vwx| \le k$
- We distinguish the following possible cases:
 - (a) v and x both contain one (repeated) symbol from $\{a,b,c\}$
 - Then $v \in \{a^m, b^m, c^m\}$ and $x \in \{a^n, b^n, c^n\}$ with m + n = |vx| > 0
 - Let $\{\alpha,\beta,\gamma\}\subseteq\{a,b,c\}$ such that $v=\alpha^m$ and $x=\beta^n$ and $\gamma\notin\{\alpha,\beta\}.$
 - Then uv^2wx^2y contains the same number of γ 's as z does, but more α 's and/or β 's
 - Choose i=2; then $uv^iwx^iy \notin L$
 - (b) v or x contains (at least) 2 different symbols from $\{a,b,c\}$
 - Then v^2 or x^2 contains ab or c before an a or a c before ab;
 - Choose i=2; then $uv^2wx^2y\notin L$

7. (6 points) Consider the language L over the alphabet $\Sigma = \{0, 1, \#\}$ with

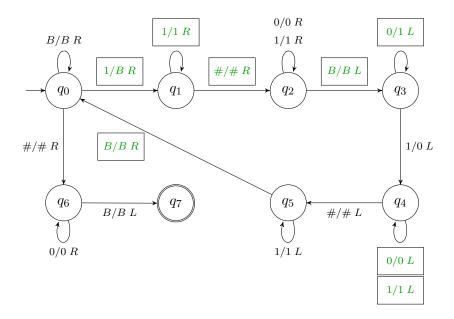
$$L := \{1^i \# w \mid w \in \{0, 1\}^* \text{ and } val(w) = i\}$$

where val(w) is the value of w interpreted as a binary number. Thus, for instance $val(1101) = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 13$. We have for instance

- $11111#101 \in L$
- $11111#101# \notin L$
- $\#000 \in L$

- $11#111 \notin L$
- 11111111111111#1101*EL*
- $\# \in L$

Consider the following incomplete Turing machine to decide this language.



- (a) Fill in the white boxes in the automaton figure.
- (b) Decide what the following states do. Choose from the list of provided options

• state
$$q_1$$
: ii

• state
$$q_4$$
: i

• state q_2 : viii

• state q_5 :

Possible options:

- i Search # marking the left end of w.
- ii Move from left to right over sequence of 1's. Once # is seen, move to next phase.
- iii Check whether we only have only 0's in the w part. If yes, we can accept.
- iv Accept.
- v Decrement number w by repeatedly replacing 0's by 1's until the first 1 seen can be replaced by 0.
- vi Read over blank character at the beginning of the tape. Erase the first 1 seen. If we see # instead, prepare to check whether we can accept.
- vii Search blank character left of the sequence of 1's.
- viii Move over 0's and 1's. Once a blank character is seen, move to next phase.

Name:	Student number:

Notes:

Name:	Student number:
Notes:	

Name:	Student number:
Notes:	

Name:	Student number:	
NI .		
Notes:		

Name:	Student number:
Notes:	