Kenmerk : TW2003/T-FAA/85/dd
Datum : December 16, 2003
Vak : Calculus I
Faculteiten : TNW, TW,EL
Vakcode : 152100
Datum : 5 januari 2004
Tijd : 13.30-16.30 uur

Alle antwoorden dienen gemotiveerd te worden. Een rekenmachine mag alleen ter controle gebruikt worden.

Bij dit tentamen is een formuleblad gevoegd.

1. Bepaal m.b.v. de stelling van l'Hospital (controleer de voorwaarden)

$$
\lim _{x \rightarrow 0} \frac{-3 x+\ln (1+2 x)}{(\sin x)^{2}}
$$

2. Gegeven is dat de functie f continu is met

$$
f(x)= \begin{cases}x \ln (1+x) & x>0 \\ 0 & x=0 \\ x^{2} & x<0\end{cases}
$$

(a) Geef de definitie van 'de afgeleide van f in a '.
(b) Ga m.b.v. de definitie na of de afgeleide van f bestaat voor $x=0$.
(c) Bepaal $f^{\prime}(x)$ voor $x \neq 0$.
3. (a) Bepaal de 3^{e} graads Taylor polynoom $T_{3}(x)$ van de functie $f(x)=\ln (1+2 x)$ in het punt $a=0$.
(b) Bepaal met de ongelijkheid van Taylor een afschatting voor

$$
\left|R_{3}(0.1)\right|=\left|f(0.1)-T_{3}(0.1)\right|
$$

Z.O.Z.

4. (a) Bereken

$$
\int_{0}^{1} x \sqrt{x+1} d x \text { m.b.v. substitutie } \sqrt{x+1}=u
$$

(b) Bereken

$$
\int \frac{2 x^{2}+x+1}{x(x+1)^{2}} d x
$$

5. Gegeven zijn $z=1+i$ en $w=1+i \sqrt{3}$.
(a) Bepaal de polaire vorm van z en w.
(b) Bereken $z w, w / z$ en z^{9} in polaire vorm.
6. Bepaal de reële oplossing van de differentiaalvergelijking

$$
y^{\prime \prime}-4 y^{\prime}+4 y=x e^{x}
$$

die voldoet aan $y(0)=y^{\prime}(0)=0$.
7. Gegeven in de functie $f(x, y)=x y e^{x^{2}-y^{2}}$.
(a) Bereken $\frac{\partial f}{\partial x}(1,1)$ en $\frac{\partial f}{\partial y}(1,1)$.
(b) Is f differentieerbaar in $(1,1)$?
(c) Bepaal de vergelijking van het raakvlak in het punt $(1,1,1)$ aan de grafiek van f.

$$
\text { totaal }=36+4=40 \text { punten }
$$

