Kenmerk: EWI2016/dmmp/013/BM

Exam Limits to Computing (201300042)

Thursday, November 3, 2016, 8:45 - 11:45

- Use of calculators, mobile phones, etc. is not allowed!
- This exam consists of five problems.
- Please start a new page for each problem.
- The total number of points is 63+7 = 70. The distribution of points is according to the following table.

1a: 6	2:15	3a: 4	4a: 4	5a: 3
1b: 7		3b: 5	4b: 4	5b: 3
1c: 3				5c: 3
2 8	12			5d: 3
			2	5e: 3

∨ 1. Decidability and Recursive Enumerability

Consider the following problem:

INJECTIVE = $\{g \in \mathcal{G} \mid \varphi_g \text{ is injective}\}.$

Recall that injective for partial functions means the following: A partial function $f : \mathbb{N} \to \mathbb{N}$ is injective if, for all $x, y \in \text{dom}(f)$, we have that f(x) = f(y) implies x = y.

 \succ (a) (6 points) Is INJECTIVE ∈ REC? Prove your answer.

 \checkmark (b) (7 points) Prove that INJECTIVE ∈ co-RE.

(c) (3 points) Is INJECTIVE $\in \mathsf{RE}$? Prove your answer.

1

\checkmark 2. NP-Completeness

A 3-uniform hypergraph H = (V, E) consists of a set V of vertices and a set E of edges. The difference to a graph is that every edge connects exactly three vertices. This means that if $e \in E$, then $e = \{u, v, w\}$ for distinct $u, v, w \in V$.

A 3-coloring of a 3-uniform hypergraph H = (V, E) is a function col : $V \to \{1, 2, 3\}$ such that for all edges $e \in E$, all three nodes of E are colored differently. In other words, if $e = \{u, v, w\}$, then $\{\operatorname{col}(u), \operatorname{col}(v), \operatorname{col}(w)\} = \{1, 2, 3\}$.

For instance, if $V = \{a, b, c, d\}$ and $E = \{\{a, b, c\}, \{b, c, d\}\}$, then col(a) = col(d) = 1 and col(b) = 2 and col(c) = 3 is a 3-coloring of *H*.

Let

HYPER3COLORING = $\{H \mid H \text{ is a 3-uniform hypergraph and 3-colorable}\}$.

Prove that HYPER3COLORING is NP-complete.

Hint: 3-COLORING = $\{G \mid G \text{ is a graph and 3-colorable}\}$ is NP-complete.

J 3. Complexity Classes 1

Let $A, B \subseteq \Sigma^*$ be two decision problems. A linear-time many-one reduction is a function $f: \Sigma^* \to \Sigma^*$ with the following properties:

(i) For all x ∈ Σ*, the function value f(x) can be computed in linear time, i.e., in time O(|x|).

(ii) For all $x \in \Sigma^*$, we have $x \in A$ if and only if $f(x) \in B$.

We write $A \leq_{\text{lin}} B$ if there is a linear-time many-one reduction from A to B.

 \bigcup (a) (4 points) Prove the following: For

- all time-constructible functions t with $t(n) \ge n$ for all n and
- all decision problems A and B

the following holds: If $A \leq_{\text{lin}} B$ and $B \in \mathsf{DTime}(O(t))$, then $A \in \mathsf{DTime}(O(t))$.

V(b) (5 points) Prove or disprove: there exists a problem $B \in \mathsf{P}$ such that $A \leq_{\text{lin}} B$ for all $A \in \mathsf{P}$. In other words, there exists a problem B that is P-complete with respect to \leq_{lin} .

4. Complexity Classes 2

For this exercise, let $UnionP = NP \cup co-NP$.

- (a) (4 points) Is UnionP closed under polynomial-time many-one reductions, i.e., is it true that $A \leq_{\mathbf{P}} B$ and $B \in \text{UnionP}$ implies $A \in \text{UnionP}$?
- (b) (4 points) Prove the following: If there exists a problem Q that is UnionP-complete with respect to polynomial-time many-one reductions, then NP = co-NP.

5. Questions

Are the following statements true or false? Justify your answers.

- (a) (3 points) If NP = NL, then P = PSPACE.
- (b) (3 points) All decision problems in NP are decidable.
- (c) (3 points) UCONN \in NL.
- (d) (3 points) For all sets $A, B \subseteq \mathbb{N}$, the following holds: If $A \cup B \in \mathsf{REC}$, then $A, B \in \mathsf{REC}$.
- (e) (3 points) For all sets $A, B \subseteq \mathbb{N}$, the following holds: If $A \in \mathsf{REC}$ and $B \in \mathsf{RE}$, then $A \setminus B \in \mathsf{co-RE}$.