Kenmerk: EWI2016/dmmp/013/BM

Exam Limits to Computing (201300042)

Thursday, November 3, 2016, 8:45-11:45

- Use of calculators, mobile phones, etc. is not allowed!
- This exam consists of five problems.
- Please start a new page for each problem.
- The total number of points is $63+7=70$. The distribution of points is according to the following table.

1a: 6	$2: 15$	3a: 4	$4 \mathrm{a}: 4$	$5 \mathrm{a}: 3$
1b: 7		$3 \mathrm{~b}: 5$	$4 \mathrm{~b}: 4$	$5 \mathrm{~b}: 3$
1c: 3				$5 \mathrm{c}: 3$
				$5 \mathrm{~d}: 3$
5e: 3				

\checkmark 1. Decidability and Recursive Enumerability

Consider the following problem:
Injective $=\left\{g \in \mathcal{G} \mid \varphi_{g}\right.$ is injective $\}$.
Recall that injective for partial functions means the following: A partial function $f: \mathbb{N} \rightarrow \mathbb{N}$ is injective if, for all $x, y \in \operatorname{dom}(f)$, we have that $f(x)=f(y)$ implies $x=y$.

- (a) (6 points) Is InJECTIVE \in REC? Prove your answer.
(b) (7 points) Prove that InJECTIVE \in co-RE.
(c) (3 points) Is Injective \in RE? Prove your answer.

2. NP-Completeness

A 3-uniform hypergraph $H=(V, E)$ consists of a set V of vertices and a set E of edges. The difference to a graph is that every edge connects exactly three vertices. This means that if $e \in E$, then $e=\{u, v, w\}$ for distinct $u, v, w \in V$.

A 3-coloring of a 3-uniform hypergraph $H=(V, E)$ is a function col : $V \rightarrow\{1,2,3\}$ such that for all edges $e \in E$, all three nodes of E are colored differently. In other words, if $e=\{u, v, w\}$, then $\{\operatorname{col}(u), \operatorname{col}(v), \operatorname{col}(w)\}=\{1,2,3\}$.

For instance, if $V=\{a, b, c, d\}$ and $E=\{\{a, b, c\},\{b, c, d\}\}$, then $\operatorname{col}(a)=\operatorname{col}(d)=$ 1 and $\operatorname{col}(b)=2$ and $\operatorname{col}(c)=3$ is a 3 -coloring of H.

Let
Hyper3Coloring $=\{H \mid H$ is a 3-uniform hypergraph and 3-colorable $\}$.
Prove that Hyper3Coloring is NP-complete.
Hint: 3-Coloring $=\{G \mid G$ is a graph and 3-colorable $\}$ is NP-complete.

\checkmark 3. Complexity Classes 1

Let $A, B \subseteq \Sigma^{\star}$ be two decision problems. A linear-time many-one reduction is a function $f: \Sigma^{\star} \rightarrow \Sigma^{\star}$ with the following properties:
(i) For all $x \in \Sigma^{\star}$, the function value $f(x)$ can be computed in linear time, i.e., in time $O(|x|)$.
(ii) For all $x \in \Sigma^{\star}$, we have $x \in A$ if and only if $f(x) \in B$.

We write $A \leq_{\operatorname{lin}} B$ if there is a linear-time many-one reduction from A to B.
V (a) (4 points) Prove the following: For

- all time-constructible functions t with $t(n) \geq n$ for all n and
- all decision problems A and B
the following holds: If $A \leq_{\operatorname{lin}} B$ and $B \in \mathrm{DTime}(O(t))$, then $A \in \mathrm{DTime}(O(t))$.
(b) (5 points) Prove or disprove: there exists a problem $B \in \mathrm{P}$ such that $A \leq \operatorname{lin} B$ for all $A \in \mathrm{P}$. In other words, there exists a problem B that is P -complete with respect to $\leq_{\operatorname{lin}}$.

4. Complexity Classes 2

For this exercise, let UnionP $=N P \cup$ co-NP.
(a) (4 points) Is UnionP closed under polynomial-time many-one reductions, i.e., is it true that $A \leq_{\mathrm{P}} B$ and $B \in$ UnionP implies $A \in$ UnionP?
(b) (4 points) Prove the following: If there exists a problem Q that is UnionP-complete with respect to polynomial-time many-one reductions, then NP = co-NP.

5. Questions

Are the following statements true or false? Justify your answers.
(a) (3 points) If NP $=\mathrm{NL}$, then $\mathrm{P}=\mathrm{PSPACE}$.
(b) (3 points) All decision problems in NP are decidable.
(c) (3 points) UCONN \in NL.
(d) (3 points) For all sets $A, B \subseteq \mathbb{N}$, the following holds: If $A \cup B \in \operatorname{REC}$, then $A, B \in \mathrm{REC}$.
(e) (3 points) For all sets $A, B \subseteq \mathbb{N}$, the following holds: If $A \in \operatorname{REC}$ and $B \in \mathrm{RE}$, then $A \backslash B \in \mathrm{co}$-RE.

