Exam Limits to Computing (201300042)

Thursday, November 1, 2018, 8:45 - 11:45

- You can bring printouts of the sheets, lecture notes, exercises, solutions (mine and yours) to the exam or anything else printed or written on paper.
- Books and electronic devices of any kind are not allowed.
- This exam consists of five problems.
- Please start a new page for each problem.
- The total number of points is 50. The distribution of points is according to the following table.

1a: 8	2: 8	3: 6	4a: 4	5a: 2
1b: 7			4b: 6	5b: 2
1c: 3				5c: 2
				5d: 2

1. Decidability and Recursive Enumerability

Let

$$\text{Disjoint} = \{ \langle g, h \rangle \mid g, h \in \mathcal{G} \text{ and } \text{dom}(\varphi_g) \cap \text{dom}(\varphi_h) = \emptyset \}.$$

- (a) (8 points) Is DISJOINT \in REC?
- (b) (7 points) Is DISJOINT \in co-RE?
- (c) (3 points) Is DISJOINT $\in RE$?

2. Complexity and NP-Completeness

(8 points) Prove the following statement: For every $\varepsilon > 0$, there exists a language L such that

- L is NP-complete and
- $L \in \mathsf{DTime}(2^{(n^{\varepsilon})}).$

3. NP and co-NP

(6 points) Let

SubgraphIsomorphism = $\{(G, H) \mid G \text{ and } H \text{ are undirected graphs and } G \text{ contains } H \text{ as an induced subgraph}\}.$

Prove that SubgraphIsomorphism is NP-complete.

4. Reductions and Complexity

We say that A is quasi-linear-time reducible to B (denoted by $A \leq_q B$) if there exists a constant $c \geq 0$ and a function f that is computable in time $O(n(\log n)^c)$ such that $x \in A$ if and only if $f(x) \in B$ for all x.

- (a) (4 points) Show that \leq_q is transitive.
- (b) (6 points) Prove that there are no P-complete with respect to \leq_q . This means that there is no $L \in \mathsf{P}$ with $A \leq_q L$ for all $A \in \mathsf{P}$.

5. Questions

Are the following statements true or false? Justify your answers.

- (a) (2 points) If $A \subseteq \mathbb{N}$ is an index set, then A or \overline{A} are recursively enumerable.
- (b) (2 points) If NP = NL, then $P \subsetneq PSPACE$.
- (c) (2 points) For all sets $A, B \subseteq \mathbb{N}$, the following holds: If $A \cap B \in \mathsf{REC}$, then $A, B \in \mathsf{REC}$.
- (d) (2 points) For all sets $A, B \subseteq \mathbb{N}$, the following holds: If $A \in \mathsf{REC}$ and $B \in \mathsf{RE}$, then $A \setminus B \in \mathsf{co-RE}$.