Exam Limits to Computing (201300042)

Thursday, November 4, 2021, 8:45 – 11:45

- You can bring printouts of the sheets, lecture notes, exercises, solutions (mine and yours) to the exam or anything else printed or written on paper.
- Electronic devices of any kind are not allowed.
- This exam consists of four problems.
- Please start a new page for each problem.
- The total number of points is 50. In addition, you can get 5 bonus points from Exercise 1(d). Sufficient for passing are 25 points.

1. Computability

Let

$$IMAGEH = \{g \in \mathcal{G} \mid g \in im(\varphi_g)\}.$$

- (a) (8 points) Is IMAGEH $\in RE$?
- (b) (8 points) Is IMAGEH \in co-RE?
- (c) (2 points) Is $IMAGEH \in REC$?
- (d) (5 bonus points) Prove that IMAGEH is not an index set.

2. NP-Completeness

A Hamiltonian cycle of an undirected graph G = (V, E) is a simple cycle of G that contains every vertex of G exactly once. Let

 $HAMCYCLE = \{G \mid G \text{ contains a Hamiltonian cycle}\}.$

A simple path in an undirected graph G = (V, E) is a sequence (v_0, v_1, \ldots, v_k) of distinct vertices with $\{v_{i-1}, v_i\} \in E$ for all $i \in \{1, \ldots, k\}$. The length of such a path is k, i.e., the number of edges that it contains. Let

LONGPATH = $\{(G, k) \mid G \text{ contains a simple path of length } k\}$.

(8 points) Prove that LONGPATH is NP-complete.

Hint: You can use the fact that HAMCYCLE is NP-complete.

3. Complexity Classes

Let $\mathsf{E} = \mathsf{DTime}(2^{O(n)})$. Recall that $\mathsf{EXP} = \bigcup_{c>0} \mathsf{DTime}(2^{O(n^c)})$.

- (a) (2 points) Prove that $E \subseteq EXP$.
- (b) (7 points) Prove that E is not closed under polynomial-time many-one reductions. This means that there are problems $A \notin E$ and $B \in E$ with $A \leq_P B$.
- (c) (3 points) Prove that $E \neq PSPACE$.

4. Questions

Are the following statements true or false? Justify your answers briefly.

- (a) (2 points) We have $L \subseteq P \subseteq PSPACE$, and at least one of the inclusions is strict.
- (b) (2 points) For all $L \subseteq \mathbb{N}$, the following holds: If χ_L is total, then $L \in \mathsf{REC}$.
- (c) (2 points) For all $L \subseteq \mathbb{N}$, we have $L \in \text{co-RE}$ if and only if $\overline{L} \in \text{RE}$.
- (d) (2 points) If $L \leq H_0$, then L is recursively enumerable.
- (e) (2 points) If P = NP, then 2SAT is NP-complete.
- (f) (2 points) If 2SAT is NP-complete, then $\mathsf{P} = \mathsf{NP}.$