Module 2, Exam Analysis, 201700140 31-01-2018 13:45h - 16:45h

Motivate all your answers.

- 1. Decide which of the following statements are true and which are false. Prove the true ones and provide counterexamples for the false ones.
 - (a) (3pt) Let X be a set and $\{E_{\alpha}\}_{{\alpha}\in A}$ be a collection of subsets of X, then

$$\left(\bigcap_{\alpha \in A} E_{\alpha}\right)^{c} = \bigcup_{\alpha \in A} E_{\alpha}^{c}$$

- (b) (3pt) Suppose $\{x_n\}$ is a bounded sequence. Then, for all $k \in \mathbb{N}, k \geq 1$: $\frac{x_n}{n^k} \to 0$ as $n \to \infty$.
- (c) (3pt) Let $a \in \mathbb{R}$ and let f and g be real functions defined at all points x in some open interval I containing a except possibly at x = a. If $\lim_{x \to a} f(x)$ does not exist and $f(x) \leq g(x)$ for all $x \in I$, then $\lim_{x \to a} g(x)$ doesn't exist either.
- 2. (a) (2pt) Let $E \subseteq \mathbb{R}$ be nonempty. Give the definition of supremum of E.
 - (b) (3pt) Prove the Approximation Property for Suprema: If E has a finite supremum and $\epsilon > 0$ is any positive number, then there is a point $a \in E$ such that

$$\sup(E) - \epsilon < a \le \sup(E)$$
.

- 3. (a) (2pt) Formulate the Intermediate Value Theorem.
 - (b) (4pt) Let $f:(1,2]\to\mathbb{R}$ be defined by

$$f(x) = \frac{1}{x^2 - 1}.$$

Use the definition of limits to prove that $\lim_{x\to 1+} f(x) = \infty$.

(c) (3pt) Prove that there is a $c \in (1, 2)$ such that f(c) = c.

- 4. (a) (3pt) Suppose $f \in \mathcal{C}^{\infty}(a,b)$ and $x_0 \in (a,b)$. Give the Taylor polynomial $P_n^{f,x_0}(x)$ of order n by f centered at x_0 . Give an upperbound for the error $|f(x) P_n^{f,x_0}(x)|$?
 - (b) (3pt) Suppose f is defined at an interval I that contains a and suppose $f \in C^2(I)$. Show that

$$\lim_{h \to 0} \frac{f(a+h) + f(a-h) - 2f(a)}{h^2} = f''(a)$$

(hint: use L'Hospital's rule.)

- 5. For each $n \in \mathbb{N}$ define $P_n = \{\frac{j}{n} \mid j = 0, 1, 2, \dots, n\}$. Let $f : [0, 1] \to \mathbb{R}$ be given by $f(x) = x^2$
 - (a) (1pt) Show that for each $n \in \mathbb{N}$: P_n is a partition of [0,1].
 - (b) (4pt) Give a formula for $U(f, P_n)$ and $L(f, P_n)$ and use these to show that f is integrable on [0, 1] and compute the value of $\int_0^1 f(x)dx$.

(Hint: use the following sum:
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6n^3}$$
.)

- (c) (2pt) Is $g:[0,1]\to\mathbb{R}$ with $g(x)=x^2\sin(\frac{1}{x})$ as $x\neq 0$ and g(0)=0 integrable on [0,1]?
 - If so, give an upper bound M of the value of the integral $\int_0^1 g(x)dx$, with 0 < M < 1. Motivate your answer.

Total: 36 points