Exam: Analysis-I (202001329) MOD-02-AM: Mathematical Proof Techniques Instructor: Pranab Mandal 14-January-2021, 09:00 – 12:00 Total Points: 35

All answers must be motivated. Approach to a solution is equally important as the final answer. Use of an electronic calculator or a book is not allowed. Good Luck!

- 1. Suppose V and W are two nonempty subsets of \mathbb{R} , which are bounded above. We define the sum of V and W as $V + W = \{v + w \mid v \in V, w \in W\}$.
 - (a) Show that V + W has a supremum. [2]
 - (b) Show that $\sup(V + W) = \sup(V) + \sup(W)$. [5]
- 2. Let the real sequence $\{a_n\}_{n\in\mathbb{N}}$ be defined as follows: $a_1=3$ and

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{7}{a_n} \right), \quad n \ge 1.$$

- (a) Show that $\sqrt{7} < a_{n+1} < a_n$ for all $n \in \mathbb{N}$.
- (b) Show that the sequence $\{a_n\}_{n\in\mathbb{N}}$ converges and find its limit. [1+2]
- 3. (a) Suppose f is continuous on [a,b] and $x_n \in [a,b]$, $(n \in \mathbb{N})$ is a convergent sequence. Prove that $f(x_n)$ converges as $n \to \infty$. [4] [You may not use the sequential characterization of limits.]
 - (b) Suppose f is defined on \mathbb{R} and is given by: $f(x) = \begin{cases} \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$ Prove that f(x) has no limit as $x \to 0$.
- 4. Suppose $f: \mathbb{R} \to \mathbb{R}$ is a differentiable function satisfying f(0) = 0 and f'(0) = 1. Show that f takes both positive and negative values.
- 5. (a) Suppose $f[a, b] \to \mathbb{R}$ is nonnegative and continuous on [a.b]. Show that $\int_a^b f(x) dx = 0$ if and ony if f(x) = 0, $\forall x \in [a, b]$. [5]
 - (b) Is the statement true if the nonegativity condition on f is removed? Justify. [1]
 - (c) Prove, however, that the following holds. If f is any integrable function on [a.b], then $\int_a^x f(u) du = 0$, $\forall x \in [a,b]$ if and ony if f(x) = 0, $\forall x \in [a,b]$. [2]

Grade: $\frac{\text{obtained score}}{35} \times 9 + 1$ (rounded off to one decimal place)