Module 2 test Lin Opt, 201300057 jan 18, 2016,

Name + studentnumber:

Motivate your answers.

- 1. Consider the problem of minimizing c^Tx over some polyhedron $P \subseteq \mathbb{R}^n$. Show that $x \in P$ is an optimal solution if and only if $c^Td \geq 0$ for all feasible directions d at x.
- 2. Solve by Simplex Method:

min
$$-x_1$$
 $-x_2$ $-2x_3$
s.t. x_2 $+2x_3$ ≤ 3
 $-x_1$ $+3x_3$ ≤ 2
 $2x_1$ $+x_2$ $+x_3$ ≤ 1
 $x \geq 0$

3. Let $A \in \mathbb{R}^{m \times n}$. Show that we can exhibit a solution x of $Ax \leq 0$, $x \geq 0$ with a maximum number of strictly positive coordinates x_i by solving

$$\begin{array}{ll} \max & \sum y_i \\ \text{s.t.} & A(z+y) \leq 0 \\ & y_i \leq 1 \ \text{ for all } i=1,...,n \\ & z,y \geq 0 \end{array}$$

exercise	1	2	3
points	5	8	5