Test Linear Optimization Monday, January 22, 2018, 8.45-11.45

Give motivations for all your answers. You are not allowed to use a calculator.

1. Consider the optimal currency conversion problem: Suppose there is a set $N = \{1, \ldots, n\}$ of available currencies, and assume that one unit of currency i can be exchanged for r_{ij} units of currency j. (Naturally, we assume that $r_{ij} > 0$.) There are certain regulations that impose a limit u_i on the total amount of currency i that we can exchange into other currencies on any given day. Suppose that we start with B units of currency 1 and that we would like to maximize the number of units of currency n that we end up with at the end of the day, through a sequence of currency transactions. Assume that for any sequence i_1, \ldots, i_k of currencies, we have $r_{i_1i_2} \cdot r_{i_2i_3} \cdot \cdots \cdot r_{i_{k-1}i_k} \cdot r_{i_ki_1} \leq 1$, which means wealth cannot be increased by going through a cycle of currencies.

Let $T = \{1, \dots r\}$ denote a set of points in time.

Let c_{it} denote the amount of currency i we have at time $t \in T$.

Let e_{ijt} denote the amount of currency i that we exchange to currency j between time points t and t+1.

We want to use the following linear program to solve the problem:

$$\max c_{nr}$$

s.t.
$$c_{j,t+1} = \sum_{i \in N \setminus \{j\}} e_{ijt} \cdot r_{ij} \quad \forall j \in N, \forall t \in T$$

$$\sum_{j \in N \setminus \{i\}} e_{ijt} \leq c_{it} \quad \forall i \in N, \forall t \in T$$

$$\sum_{j \in N \setminus \{i\}} \sum_{t \in T} e_{ijt} \leq u_{i} \quad \forall i \in N, \forall t \in T$$

$$c_{11} = B$$

The first set of constraints states that the amount of currency j we have at each time point equals the amount of currency we converted to j since the previous time point. The second set of constraints states that the amount of currency i we can convert after each time point equals at most the amount of currency i we had at that time point.

The third set of constraints expresses the regulations that impose a limit u_i . The fourth (single) constraint states that we start with B units of currency 1.

- a) Find all the mistakes in this linear program, explain why they are wrong, and explain how you would correct them.
- b) Explain intuitively why we can choose r = n, i.e. we do not need more than n time points.
- 2. Prove that the function $f(x) = |x|, x \in \mathbb{R}$ is convex.
- 3. Suppose that \mathbf{x} and \mathbf{y} are vertices of some polyhedron P. Prove that $2\mathbf{y} \mathbf{x}$ is not a vertex of P.

Turn the page for exercises 4, 5 and 6!

4. Solve the following linear program using the simplex method. max $4x_1 - 2x_2$

s.t.
$$x_1 - x_2 \le 1$$

 $4x_1 - 4x_2 \le 2$
 $-4x_1 + 7x_2 \le 1$
 $x_1 \ge 0, x_2 \ge 0$

5. Consider the following tableau:

- a) Suppose b < 0 and c > 0. For what values of a would the lexicographic pivoting rule pick the third column to leave the basis in the next iteration?
- b) Suppose b > 0 and c < 0. For what values of a would the lexicographic pivoting rule pick the third column to leave the basis in the next iteration?
- c) Do there exist values for a, b, c such that this is a tableau in the first step of the two-phase simplex method? If there do exist such values, give these values, and explain why. If not, explain why.
- 6. Consider the following linear program with optimum $x_1 = 3, x_2 = -1, x_3 = -3$.

$$\begin{array}{llll} \max & 10x_1 & -5x_2 & +6x_3 \\ \text{s.t.} & x_1 & -2x_2 & +x_3 & \leq 2 \\ & 2x_1 & -x_2 & +x_3 & \leq 4 \\ & 3x_1 & +3x_2 & +x_3 & \leq 3 \\ & -x_1 & -2x_2 & -x_3 & \leq 4 \\ x_1 \geq 0, x_2 \leq 0, x_3 \leq 0 \end{array}$$

- a) Construct the dual program.
- b) Use complementary slackness to compute the optimum of the dual program.

exercise	1	2	3	4	5	6
points	8	8	8	8	8	8