Resit Linear Optimization Friday, February 1, 2019, 13.45-16.45

Give motivations for all your answers. You are not allowed to use a calculator.

1. We can produce two different products a and b, using two resources, r and s.

One unit of product a requires r_a units of resource r and s_a units of resource s and yields p_a dollars.

One unit of product b requires r_b units of resource r and s_b units of resource b and yields p_b dollars.

We buy our resources from a supplier, who charges us c_r dollars per unit of resource r and c_s dollars per unit of resource s.

Due to demand, we can sell at most d_a units of product a and d_b units of product b.

- a) Construct a linear program that maximizes our profit (yield minus cost).
- b) Suppose that our supplier offers us 10% discount if we spend at least t dollars on resources. Note that we can choose whether or not to make use of this offer. Explain how you would find the maximum profit in this case. Hint: Construct a new linear program, and use it together with the linear program from part a).
- 2.9 a) Prove that the set $\{(x,y) \in \mathbb{R}^2 \text{ for which } -|x| \leq y\}$ is not convex.
 - b) Prove that the set $\{(x,y) \in \mathbb{R}^2 \text{ for which } y \leq -|x|\}$ is convex.
- 3. a) Prove or give a counterexample: For all polyhedra $P \subseteq \mathbb{R}^2$, for all vertices $\mathbf{x}^* \in P$, there exists a line $l = \{\mathbf{x} \in \mathbb{R}^2 | \mathbf{a}'\mathbf{x} = \mathbf{b}\}$ for which $l \cap P = \mathbf{x}^*$, i.e. \mathbf{x}^* is the only element of P on l.
 - b) Prove or give a counterexample: For all polyhedra $P \subseteq \mathbb{R}^2$, for all feasible solutions $\mathbf{x}^* \in P$, the following holds: If there exists a line $l = {\mathbf{x} \in \mathbb{R}^2 | \mathbf{a}'\mathbf{x} = \mathbf{b}}$ for which $l \cap P = \mathbf{x}^*$, then \mathbf{x}^* is a vertex of P.
- 4. Solve the following linear program using the simplex method. min $-4x_1$ $+2x_2$
 - s.t. $2x_1 -2x_2 \le 2$ $4x_1 -3x_2 \le 5$ $-x_1 +2x_2 \le 3$ $x_1 \ge 0, x_2 \ge 0$

s.t.
$$Ax = b$$

 $x \ge 0$

Here matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ has m linearly independent rows, and vector $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{b} \geq \mathbf{0}$. Recall that in the first phase of the two-phase simplex method, we introduce a vector $\mathbf{y} = (y_1, \dots, y_m)$, and solve the following linear program (Phase 1): $\min \sum_{i=1}^m y_i$

s.t.
$$Ax + y = b$$

 $x \ge 0$
 $y \ge 0$

3

3

3

- a) Explain how we can find a basic feasible solution to the Phase 1 problem.
 - b) Explain for which results of the Phase 1 problem, we can conclude that the Phase 2 problem is infeasible.
 - c) Explain for which results of the Phase 1 problem, we can conclude that the Phase 2 problem has a basic feasible solution, and explain how to find this basic feasible solution.
 - d) Instead of $\min \sum_{i=1}^{m} y_i$, we can also use a different objective in Phase 1. For both of the following two objectives, explain intuitively whether you can conclude from an optimal solution of Phase 1, whether the Phase 2 problem has a feasible solution or not.

Objective 1:
$$\min \sum_{i=1}^{m} i \cdot y_i$$
. Objective 2: $\min \sum_{i=1}^{m} -y_i$

6. Consider the following linear program with optimal solution $x_1 = 30/17, x_2 = -11/17, x_3 = 0.$

$$\begin{array}{llll} & \min & 7x_1 & -x_2 & +2x_3 \\ & \text{s.t.} & x_1 & -5x_2 & +x_3 & \geq 5 \\ & & 3x_1 & +2x_2 & +x_3 & \geq 4 \\ & & 2x_1 & +2x_2 & -x_3 & \geq 1 \\ & & x_1 & +3x_2 & \geq -1 \\ & x_1 \geq 0, x_2 \leq 0, x_3 \leq 0 \end{array}$$

- a) Construct the dual program.
- b) Use complementary slackness to compute an optimal solution of the dual program.

exercise	1	2	3	4	5	6
points	8	8	8	8	8	8