Test Linear Optimization Monday, January 24, 2022, 8.45-11.45

Give motivations for all your answers. You are not allowed to use a calculator.

1. You have L m² of land available.

You have a budget of B dollars to buy trees to plant on your land.

There are n different types of trees available.

A tree of type i costs d_i dollars, it requires l_i m² of land, and it produces o_i liters of oxygen per year.

- (a) Construct a linear program that maximises the yearly oxygen production of your land.
- (b) Describe in words the interpretation of the shadow price (the value of the variable in an optimal dual solution) corresponding to your budget-constraint.
- 2. **Prove** that the set $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ is convex. You may use that $(a^2 + b^2 \le 1 \text{ and } c^2 + d^2 \le 1)$ implies that $ac + bd \le 1$ without proving it.
- 3. Let $P \subseteq \mathbb{R}^2$ be a polyhedron. Let $F : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear operator, and let $G : \mathbb{R}^2 \to \mathbb{R}^2$ be an invertible linear operator.

Recall that T(P) denotes the set of all $\mathbf{v} \in \mathbb{R}^2$ for which $\mathbf{v} = T(\mathbf{w})$ for some $\mathbf{w} \in P$. For each of the following statements, either give a proof or a counterexample.

- S1) For any vertex \mathbf{v} of P, $F(\mathbf{v})$ is a vertex of F(P).
- For any vertex \mathbf{v} of P, $G(\mathbf{v})$ is a vertex of G(P).
- (4) Solve the following linear program using the simplex method.

$$\min -3x_1 + 2x_2 + x_3$$

s.t.
$$x_1 + 2x_2 \leq$$

$$\begin{array}{cccc} 3x_1 & -3x_2 & +x_3 & \le 3 \\ & 4x_2 & +2x_3 & \le 2 \end{array}$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

5. Consider a standard form LP min c'x

s.t.
$$A\mathbf{x} = \mathbf{b}$$

 $\mathbf{x} \ge \mathbf{0}$

with 2 identical columns: $A_i = A_j$ for some i, j. Let $c_j < c_i$. For each of the following statements, either give a proof or a counterexample.

- S1) For any basic feasible solution \mathbf{x} for which x_i is a basic variable, the reduced cost \overline{c}_j equals $c_j c_i$.
- S2) In any step of the simplex method, at a basic feasible solution \mathbf{x} where x_j is a basic variable, x_i does not become basic in the next step.
- 6. Determine the dual of the linear program

$$\max x - y$$
s.t. x $-z = 2$

$$2y + z \le 1$$

$$x \ge 0, y \le 0, z \text{ free}$$

b) Consider the following LPs:

$$\begin{array}{ll} \underline{LP1} & \underline{LP2} \\ \max \mathbf{c'x} & \max \mathbf{c'x} \\ \mathrm{s.t.} & \mathbf{Ax} = \mathbf{b} \\ & \mathbf{A'p} = \mathbf{c} \\ & \mathbf{c'x} = \mathbf{b'p} \end{array}$$

Prove that if LP1 has an optimal solution, then LP2 has an optimal solution with the same objective value.

exercise	1	2	3	4	5	6
points	8	8	8	8	8	8