Robust Control — **EXAM** (resit)

Course code:

191560671

Date:

02-07-2019 (HB 2E)

Time:

08:45–11:45 (till 12:30 for students with special rights)

Course coordinator & instructor: G. Meinsma

Type of test:

open book, written exam

Allowed aids during the test:

printed lecture notes, basic calculator

1. Let $\tau > 0$ and consider the system with transfer function

$$G(s) = \frac{\mathrm{e}^{-\tau s}}{s+4}.$$

- (a) Determine $||G||_{\mathbb{H}_2}$ for $\tau = 0$
- (b) Show that both $||G||_{\mathbb{H}_2}$ and $||G||_{\mathbb{H}_{\infty}}$ do not depend on τ (provided $\tau \geq 0$).
- 2. Use the machinery of Lemma 3.4.1 to construct a strictly proper controller K(s) for plant $P(s) = 1/(s + 0.01)^2$ such that $H_{\gamma/r}(s)$ is strictly proper and having a bandwidth 0.1 and $H_{y/r}(0) = 1$.
- 3. Let g be a positive number, and suppose the loop gain is

$$L(s) = \frac{g}{s}$$
.

Determine the delay margin of this L(s).

4. Suppose the plant is

$$P(s) = \frac{s - 11}{s - 9},$$

and suppose we managed to find a stabilizing controller with the property that

$$\max_{\omega \in [0,\omega_1]} |S(\mathrm{i}\omega)| < 0.1$$

for some frequency $\omega_1 > 0$. Show that $||S||_{\infty} \ge 10$.

5. Consider Kalman filtering problem

$$\dot{x} = ax + w_1,$$

$$y = x + \sqrt{\sigma} w_2$$

Here all signals have one entry, and a is an arbitrary real number, and σ is a positive tuning parameter.

- (a) Determine the Kalman filter for this problem.
- (b) The Kalman filter that you constructed in the previous part depends on a, σ . Does this dependence confirm the idea that "the more unstable the plant, the faster the observer"?

6. Consider the mixed sensitivity problem in the \mathbb{H}_{∞} norm for the plant

$$P(s) = \frac{1}{(s+1)(s+2)}.$$

Suppose we are after a stabilizing controller that achieves a closed loop bandwidth of 5, and, of course, T(0) = 1. Explain how you would choose your (initial but sensible) weighting functions V(s), $W_1(s)$, $W_2(s)$.

7. Suppose we have an uncertain plant

$$P(s) = P_0(s)(1 + \frac{1}{2}\Delta(s))$$

in which

$$P_0(s) = \frac{1}{s+1}$$

and Δ is some stable system all of which we know is that $\|\Delta\|_{\infty} < 1$. Consider the controller

$$K(s)=\frac{1}{s}.$$

- (a) Show that this K(s) stabilizes the nominal plant $P_0(s)$.
- (b) Determine the interconnection matrix $H_{q/p}(s)$ for this problem.
- (c) Are we guaranteed that the controller stabilizes all possible plants?

	88		A		3	3	83 3
problem:	1	2	3	4	5	6	7
points:	4+4	4	4	4	4+2	4	1+3+2

Grade: $g = 1 + 9 \frac{p}{p_{\text{max}}}$. The final grade is $\frac{2}{3}g + \frac{1}{3}a$ where a is the grade of the practical assignment.