Robust Control — **EXAM**

Course code:

191560671

Date:

20-04-2023 (RA-4334)

Time:

08:45–11:45 (till 12:30 for students with special rights)

Course coordinator & instructor: G. Meinsma

Type of test:

open book, written exam

Allowed aids during the test:

lecture notes 'Robust Control" & basic calculator

- i. Which Msc programme (AM, BME, EE, SC, ?) do you follow?
- ii. In what year did you complete the practical assignment, and with whom (if any) did you do the assignment?
- 1. Consider the transfer function

$$G(s) = \frac{-e^{-s}}{s+4}$$

- (a) Determine $||G||_{\mathbb{L}_{\infty}}$.
- (b) Determine $||G||_{\mathbb{H}_{\infty}}$.
- (c) Determine $||G||_{\mathbb{H}_2}$.
- 2. Consider the system

with loop gain

$$L(s) = \frac{k e^{-s\tau}}{s}.$$

The loop gain depends on a gain $k \in \mathbb{R}$ and a nonnegative delay τ .

- (a) Suppose first that $\tau = 0$. Determine all $k \in \mathbb{R}$ for which the closed loop is internally stable
- (b) Let $\tau > 0$. Determine all k for which the closed loop is internally stable.
- (c) Let $\tau = 2$ and suppose k is such that the closed loop is internally stable. Sketch a reasonable response y to a step input $r(t) := \mathbb{I}(t)$.
- 3. Suppose the plant is

$$P(s) = \frac{s-2}{s^2 - 9}.$$

Assuming we managed to find a stabilizing controller that keeps the magnitude sensitivity function $|S(i\omega)|$ below 0.1 for all $\omega \in [0,2]$, what can you say about $||S||_{\mathbb{H}_{\infty}}$ and $||T||_{\mathbb{H}_{\infty}}$? (Be as explicit as possible.)

4. Consider the \mathbb{H}_2 filtering problem with state representation

$$\begin{bmatrix} \dot{x} \\ z \\ y \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ \hline 1 & 0 & -1 \\ -3 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ w \\ u \end{bmatrix}.$$

Determine the stable causal filter K that minimizes $\|H_{z/w}\|_{\mathbb{H}_2}$ over all stable causal filters.

5. Consider the \mathbb{H}_{∞} filtering problem

with

$$G_{m/w}(s) = \frac{1}{s+2}, \qquad G_{y/w}(s) = \frac{s-1}{s+2}$$

Determine the stable causal filter K that minimizes $\|H_{z/w}\|_{\mathbb{H}_{\infty}}$ over all stable causal filters.

6. Let W_S^{-1} , W_P be two stable rational transfer functions. Suppose our plant P is uncertain: $P = P_0 + \Delta$ where Δ is some unknown stable system that is bounded by

$$|\Delta(i\omega)| \le |W_P(i\omega)| \quad \forall \omega \in \mathbb{R}.$$

Suppose we want to design a controller that stabilizes the closed loop and achieves the performance specification that

$$|S(i\omega)| \le |W_S(i\omega)| \quad \forall \omega \in \mathbb{R}$$

for all possible plants $P = P_0 + \Delta$. The lecture note claims that all this is guaranteed if

$$||H||_{\mathbb{H}_{\infty}} < 1$$

for some appropriate interconnection matrix H depending on P_0 and W_P, W_S . Determine this H.

problem:	1	2 .	3	4	5	6
points:	3+2+4	2+4+2	5	6	4	4

Grade: $g = 1 + 9 \frac{p}{p_{\text{max}}}$. The final grade is $\frac{3}{4}g + \frac{1}{4}a$ where a is the grade of the practical assignment.

2

Robust Control — **EXAM**

Course code:

191560671

Date:

04-07-2023 (Therm 1)

Time:

08:45–11:45 (till 12:30 for students with special rights)

Course coordinator & instructor: G. Meinsma

Type of test:

open book, written exam

Allowed aids during the test:

lecture notes 'Robust Control" & basic calculator

- i. Which MSc programme (AM, BME, EE, SC, ?) do you follow?
- ii. In what year did you complete the practical assignment, and with whom (if any) did you do the assignment?
- 1. Determine the spectral norm of

$$A = \begin{bmatrix} 1 & 2 \\ 1 & -1 \\ 1 & -1 \end{bmatrix}.$$

2. Determine $||G||_{\mathbb{H}_{\infty}}$ of the system *G* with state representation

$$\dot{x} = -2x + u$$

$$y = x$$

- 3. Use the Guillemin-Truxal design procedure to design a proper stabilizing controller K for $P(s) = 1/(s^2 + s + 1)$ such that $H_{\gamma/r}$ has bandwidth 1/2.
- 4. Suppose the loop gain L(s) is stable, and that $\text{Re}(L(i\omega)) \ge 0$ for all frequencies.
 - (a) Can the closed loop be unstable?
 - (b) Assuming the closed loop is stable, what can you say about the phase margin?
- 5. Let L(s) = 1/(s 1/4). Determine $\int_0^\infty \ln |S(i\omega)| d\omega$.

6. Consider the system

$$\dot{x} = -2x + u,$$
 $x(0) = x_0,$
 $z = -3x + u.$

Solve the LQ problem with stability, that is, determine the optimal state feedback u=-Fx and minimal cost $\int_0^\infty z^2(t)\,\mathrm{d}t$.

- 7. The nominal plant $P_0(s) = 1/s^2$ can successfully be controlled with a lead controller of the form $K_0(s) = (2s+1)/(s+2)$. Now suppose the actual plant is $P(s) = (\theta s + 1)/s^2$, with θ some uncertain parameter $\theta \in [-0.5, 0.5]$. Does $K_0(s)$ stabilize all possible plants?
- 8. Table 9.1 from the lecture notes claims that the interconnection matrix for uncertain plant $P = P_0(I + V\Delta_P W)$ is $H = WKS_0P_0V$. Derive this result (and your derivation must also be valued for MIMO systems).

problem:	1	2	3	4	5	6	7	8
points:	3	4	5	3+3	3	5	5	5

Grade: $g = 1 + 9 \frac{p}{p_{\text{max}}}$. The final grade is $\frac{3}{4}g + \frac{1}{4}a$ where a is the grade of the practical assignment.