Faculty of Electrical Engineering, Mathematics and Computer Science Applied Finite Elements, Mastermath EXAM APRIL 21, 2017: 13:30 – 16:30 O'Clock @ Educatorium Megaron, Utrecht University

1 Given Holand & Bell's Theorem for a line segment and for a triangle:

Theorem: Let *e* be a triangle in \mathbb{R}^2 with vertices (x_1, y_1) , (x_2, y_2) and (x_3, y_3) , and let $\lambda_1(x, y)$, $\lambda_2(x, y)$ and $\lambda_3(x, y)$ be linear on *e*, for which

 $\lambda_i(x_j, y_j) = \delta_{ij}$, where δ_{ij} represents the Kronecker Delta,

and let $m_1, m_2, m_3 \in \mathbb{N} = \{0, 1, 2, ...\}$, then

$$\int_{e} \lambda_1^{m_1} \lambda_2^{m_2} \lambda_3^{m_3} d\Omega = \frac{|\Delta_e| m_1! m_2! m_3!}{(2+m_1+m_2+m_3)!}, \quad \text{where } \frac{|\Delta_e|}{2} \text{ represents the area of triangle } e.$$
(1)

In this assignment, the λ -functions are always linear and always satisfy $\lambda_i(x_j, y_j) = \delta_{ij}$.

a Show that the Newton-Cotes numerical integration rule using linear functions over triangle e with vertices (x_1, y_1) , (x_2, y_2) and (x_3, y_3) is given by

$$\int_{e} g(x,y) d\Omega \approx \frac{|\Delta_{e}|}{6} \sum_{p=1}^{3} g(x_{p}, y_{p}).$$
⁽²⁾

(1 pt)

b Next, we consider quadratic basisfunctions over triangle *e* with vertices (x_1, y_1) , (x_2, y_2) and (x_3, y_3) , and midpoints (x_4, y_4) , (x_5, y_5) and (x_6, y_6) on the faces of *e*. For the quadratic functions, we use the following basisfunctions

$$\phi_i(x, y) = \lambda_i(2\lambda_i - 1), \text{ for } i \in \{1, 2, 3\},\$$

and

$$\phi_4(x,y) = 4\lambda_1\lambda_2, \ \phi_5 = 4\lambda_2\lambda_3, \ \phi_6(x,y) = 4\lambda_3\lambda_1$$

- i Show that $\phi_i(x_i, x_j) = \delta_{ij}$ for $i, j \in \{1, \dots, 6\}$.
- ii Show that the Newton-Cotes numerical integration using quadratic basis functions over triangle e is given by

$$\int_{e} g(x, y) d\Omega \approx \frac{|\Delta_e|}{6} \sum_{p=4}^{6} g(x_p, y_p).$$
(3)

(2 pt)

(1 pt)

c Subsequently, we use the quadratic basis functions ϕ_i to calculate the entries of the element matrix. In this question, you may use $\frac{\partial \lambda_i}{\partial x} = \beta_i$ and $\frac{\partial \lambda_i}{\partial y} = \gamma_i$, and $|\Delta_e|$ representing twice the area of the triangular element *e*. Calculate the following integral

$$S_{11}^e = \int_e ||\nabla\phi_1||^2 d\Omega.$$
(3 pt)

2 Given the following functional, where u(x, y) is subject to an essential boundary condition

$$J[u] = \int_{\Omega} \frac{1}{2} ||\nabla u||^2 + \frac{1}{2}u^2 - uf(x, y) \ d\Omega,$$
$$u(x, y) = u_0(x, y), \qquad \text{on } \partial\Omega_1,$$

where Ω is a bounded domain in \mathbb{R}^2 with boundary $\partial \Omega = \partial \Omega_1 \cup \partial \Omega_2$, where $\partial \Omega_1$ and $\partial \Omega_2$ are non-overlapping segments. We are interested in the minimiser for the above functional:

Find *u*, subject to $u = u_0(x, y)$ on $\partial \Omega_1$ such that $F(u) \leq F(v)$ for all *v* subject to $v = u_0(x, y)$ on $\partial \Omega_1$.

- a Derive the Euler-Lagrange equation (PDE) for u(x, y), and give the boundary condition(s) on $\partial \Omega$. (2 pt)
- b Derive the Ritz equations.
- c We approximate the solution to the minimisation problem by Ritz' Method. Give the element matrix based on linear triangular elements. You may use $|\Delta_e|$, being two times the area of element *e*, and $\frac{\partial \lambda_i}{\partial x} = \beta_i$ and $\frac{\partial \lambda_i}{\partial y} = \gamma_i$ for the basis functions. (2 pt)
- 3 We consider the following boundary value problem for u = u(x, y) to be determined in $\Omega \subset \mathbb{R}^2$ (bounded by $\partial \Omega$):

$$\begin{cases} \nabla \cdot \left(\frac{\nabla u}{\sqrt{1+||\nabla u||^2}}\right) = 0, & \text{in } \Omega, \\ u = g(x, y), & \text{on } \partial \Omega, \end{cases}$$
(4)

(1 pt)

a Derive the weak formulation in which the order of spatial derivatives is minimized. (2 pt)

- b Derive the Galerkin Equations to the weak form in part a. (1 pt)
- c We use Picard's Fixed Point Method to solve the nonlinear problem. Describe how you would approximate the solution using successive approximations. (2 pt)
- d We use linear triangular elements to solve the problem. All answers may be expressed in terms of $|\Delta_e|$ being twice the area of element *e*, and in $\frac{\partial \lambda_i}{\partial x} = \beta_i$ and $\frac{\partial \lambda_i}{\partial y} = \gamma_i$.
 - i Compute the element matrix and element vector for an internal triangle. (2 pt)
 - ii Compute the element matrix and element vector for a boundary element. (1 pt)

Exam Grade =
$$\frac{\text{Sum over all credits}}{2}$$
.