Faculty of Electrical Engineering, Mathematics and Computer Science Applied Finite Elements, Mastermath Exam, April 23, 2017–2018, Educatorium, Lecture room beta

Exam Grade =
$$\frac{\text{Sum over all credits}}{2}$$
.

1 Given the following functional,

$$F[u] = \int_{x_1}^{x_2} g(x, u(x)) \sqrt{1 + (u'(x))^2} \, dx.$$

where g = g(x, u) is a smooth function. We are interested in the minimiser for the above functional:

Find *u*, subject to the constraints $u(x_1) = u_1$ and $u(x_2) = u_2$ where $x_1 < x_2$, such that $F(u) \le F(v)$ for all *v* subject to $v(x_1) = u_1$ and $v(x_2) = u_2$.

- a Derive the Euler-Lagrange equation. (3 pt)
- b Derive the Ritz equations.
- 2 Given the following boundary value problem in domain Ω with boundary $\partial \Omega$

$$-\nabla \cdot (k(x,y)\nabla u) + \mathbf{v} \cdot \nabla u = f(x,y), \quad \text{in } \Omega,$$

$$u = 0, \qquad \qquad \text{on } \partial\Omega.$$
(1)

(2 pt)

where k(x, y) and f(x, y) are given functions with k(x, y) > 0, and v is a given vector.

- a Why can we not write this problem into a minimisation problem if $\mathbf{v} \neq \mathbf{0}$? (2 pt)
- b Take $\mathbf{v} = \mathbf{0}$. Prove that the above problem can be written into a minimisation problem. (3 pt)
- c Give the minimisation problem in which the square of ∇u and the square of u are integrable over Ω (that is $u \in H^1(\Omega)$). (2 pt)
- 3 We consider the following boundary value problem for u = u(x, y) to be determined in $\Omega \subset \mathbb{R}^2$ (bounded by $\partial \Omega$):

$$\begin{cases} -\nabla \cdot (D(u)\nabla u) + \mathbf{v} \cdot \nabla u = f(x, y), & \text{in } \Omega, \\ u = g(x, y), & \text{on } \partial \Omega, \end{cases}$$
(2)

where D(u) is a positive function of u, **v** is a given vector, and f(x, y) and g(x, y) are given functions.

- a Derive the weak formulation in which the order of spatial derivatives is minimized. (2 pt)
- b Derive the Galerkin Equations to the weak form in part a. (1 pt)
- c We use Picard's Fixed Point Method to solve the resulting nonlinear problem. Describe how you would approximate the solution using successive approximations. (2 pt)
- d We use linear triangular elements to solve the problem. All answers may be expressed in terms of $|\Delta_e|$, being twice the area of element *e*, and $\beta_i = \frac{\partial \lambda_i}{\partial x}$ and $\gamma_i = \frac{\partial \lambda_i}{\partial y}$.
 - i Compute the element matrix and element vector for an internal triangle. (2 pt)
 - ii Compute the element matrix and element vector for a boundary element. (1 pt)

You may use Newton-Cotes' approximation for numerical integration, which reads as

$$\int_{e} h(x,y) d\Omega = \frac{|\Delta_{e}|}{6} \sum_{p \in \{1,2,3\}} h(x_{p},y_{p}), \text{ for triangle } e \text{ with vertices } (x_{p},y_{p})$$