201700080 Information Theory and Statistics 11 April 2019, 8:45 - 11:45

This test consists of 6 problems for a total of 31 points. All answers need to be justified. The use of a non-programmable calculator (not a "GR") is allowed and advised. No books, notes, or other materials may be used.

Formulas you may find useful:

$$D(P \| Q) = \sum_{x \in \mathcal{X}} P(x) \log \frac{P(x)}{Q(x)}$$

$$H(X, Y | Z) = H(X | Z) + H(Y | X, Z)$$

$$I(X; Y | Z) = H(X | Z) - H(X | Y, Z)$$

 [2 pt] Let X, Y and Z be jointly distributed random variables. Prove the following inequality and find conditions for equality:

$$H(X,Y,Z) - H(X,Y) \le H(X,Z) - H(X).$$

- 2. Consider a source with alphabet $\mathcal{X} = \{a, b, c, d, e, f, g\}$ and p(a) = p(b) = p(c) = 0.1, p(d) = p(e) = p(f) = 0.15, p(g) = 0.25. You want to compress this source and store the compressed data onto a device that is using ternary storage. This means that you will compress into the alphabet $\{0, 1, 2\}$.
 - a. [1 pt] Explain the property 'instantaneous decodability'.
 - b. [1 pt] Consider the code C for which C(a) = 0, C(b) = 1, C(c) = 20, C(d) = 21, C(e) = 22 and C(f) = 200 and C(g) = 201. Is C instantaneously decodable?
 - c. [1 pt] Compute the entropy H(X) of the source.
 - d. [2 pt] Construct a ternary Huffman code for the source. Denote this code by C' and let L' denote its codewords lengths. Compute $\mathbb{E}[L']$.
 - e. [2 pt] Give two different arguments for why it is not possible to construct a prefix code for this source for which the expected codeword length is 1.7. Formulate as precisely as possible the theory that you are using.
- 3. A fountain code is used to communicate bits m_1, m_2, m_3 . You receive the encoded symbols $m_1 + m_2 = 0$, $m_1 = 0$, $m_1 + m_2 + m_3 = 1$ and $m_2 + m_3 = 1$.
 - a. [1 pt] Construct a bipartite graph that represents the information in the encoded symbols.

- b. [3 pt] Use belief propagation to decode m_1, m_2, m_3 . Explicitly show all steps involved. (You do not receive points for the values of m_1, m_2, m_3 , only for the correct procedure.)
- 4. Consider the channel with $\mathcal{X} = \mathcal{Y} = \{0, 1\}$, with P(Y = 1 | X = 1) = P(Y = 0 | X = 0) = 1 e.
 - a. [2 pt] Give the definition of channel capacity and state the noisy channel coding theorem.
 - b. [3 pt] Find the channel capacity for this channel as a function of e. Express your answer using the binary entropy function.
- 5. You receive a sample of n observations x_1, x_2, \ldots, x_n , that are independent and identically distributed according to a geometric distribution for which the success probability p is unknown. It is known that either $p = p_1$ or $p = p_2$, i.e. the distribution for a single observation is either $P_1(X = x) = (1 p_1)^{x-1}p_1$ or $P_2(X = x) = (1 p_2)^{x-1}p_2$, $x = 1, 2, \ldots$
 - a. [1 pt] Give the general formulation of a binary hypothesis testing problem. (Specify the hypotheses, the decision rule and the possible errors.)
 - b. [2 pt] Formulate a hypothesis test and a Neyman-Pearson optimal decision rule for deciding on the value of p. (Hint: Express the decision rule in terms of the log-likelihood ratio and write it as explicitly as possible in terms of the observed values x_1, x_2, \ldots, x_n .)
 - c. [2 pt] Compute $D(P_1 \parallel P_2)$. (Hint: $\mathbb{E}[X] = 1/p$)
 - d. [2 pt] State the Chernoff-Stein result and discuss the implications for this problem.
- 6. Let X be continuous random variable for which the probability density function $f_{\theta}(x) = \frac{x}{\theta}e^{-\frac{x^2}{2\theta}}$ for $x \geq 0$ and $f_{\theta}(x) = 0$ for x < 0. Here θ is an unknown parameter. For this random variable it is known that $\mathbb{E}[X^2] = 2\theta$ and $\operatorname{Var}[X^2] = 4\theta^2$.

After observing n independent realizations of this random variable you want to estimate θ . One possible way to estimate θ is to use $\tilde{\theta} = \frac{1}{2n} \sum_{i=1}^{n} x_i^2$.

- a. [2 pt] Compute the bias and the variance of $\tilde{\theta}$.
- b. [2 pt] Assume that θ is unknown and compute the Fisher information $J(\theta) = -\mathbb{E}\left[\frac{\partial^2}{\partial^2 \theta} \ln f_{\theta}(X)\right]$ for a single observation.
- c. [2 pt] State the Cramer-Rao bound and discuss in your own words the implications of the results from a) and b). (If you did not solve a) you may assume that $\tilde{\theta}$ is unbiased and that $Var[\tilde{\theta}] = 2\theta^2/n$. If you did not solve b) you may assume $J(\theta) = 1/\theta^2$)