Mathematical Optimization
Exam July 7, 2021, 9:00 - 12:00

No additional materials may be used during this exam (no notes, calculators, etc.). With
this exam a list of theorems and lemmata is provided. In your proofs, you may use defini-
ttons from the lecture notes and the theorems and lemmata from the list without providing
a proof (reference the theorem/lemma that you use). In addition, you may use all results
from Chapter 1 and all theorems, lemmata, corollaries and propositions from Chapter 4 in
the Lecture Notes with a reference like “We know that...”.

1. Consider the following system of inequalities
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(a) Apply the Fourier-Motzkin elimination procedure to show the infeasibilty of this
systen.

(b) Find a vector y € R®, as mentioned in Farkas Lemma, that exhibits the infea-
sibilty of this system.

2. Recall that L(vy,..., va) = {327, vjAj | Aj € Z} denotes the lattice generated by
the vectors vy,..., Viis

(a) Compute linearly independent vectors ¢; and c,, such that
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(b) Decide if there is an integer solution x to the system
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If such x exists, provide one.

3. Find a matrix A such that S = AAT for
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4. Consider the primal linear program

(]

max c!'x
3.t. Ax < b,

where A = (a;;) € R™", b= (b;) € R™, and ¢ = (¢;) € R".
(a) Give the dual of this program.

(b) Consider s = b — Ax, for a feasible solution x of the primal problem. and
suppose y € R™ is a feasible solution of the dual problem.
Show that if s;; = 0 for all i € {1,...,m}, then x and y are optimal solutions
of the primal. respectively, the dual program.

Let f : R" — R be a convex function on R". Let M denote the set of (global)
minimizers of f on R", M := {x € R"| f(X) < f(x),Vx € R"}.

Show that the set 1/ is closed and convex.

(a) Prove that the function f(z) = e” is convex.
(b) Use (a) to prove that e* > ex for all x € R.
Let f(x) = i + 2z129 + 221 + (1 + 29)2.

(a) Determine the critical points and the local minimizer(s) of f.

(b) Does f have (a) global minimizer(s)? Motivate!

We consider the function f: R2 — R given by
f(%) = 222 (1 + €**) + z sin(as) + (21 + 2)z5.

(a) Show by calculation that
. 12«
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(b) Apply one step of Newton’s method to the minimize f starting at xo = (— In2. 7).

(c) Is the direction that you found in (b) a descent direction? Motivate!

Points: 90 + 10 = 100
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