Sample Exam: Analysis-2 (202200237), MOD-02-AM: Structures and Systems

Instructors: Pranab Mandal and Carlos Pérez Arancibia

Date/Time: 30-January-2023, 13:45 - 16:45

- Closed book/calculator exam! May use one single-sided handwritten A4-paper.
- All answers must be motivated, including the answers for Section C.
- Answers for Section A must use the four steps (practised during Tutor Sessions).
 - (i.) Get Started: describe what the problem is about and your initial thoughts
 - (ii.) Devise Plan: provide an outline how you plan to solve (or have solved) the problem
 - (iii.) Execute: execute your plan (and try) to reach your solution
 - (iv.) Evaluate: reflect on your solution and/or approach [with something new not yet mentioned].

Points are distributed (roughly) as: steps (i.)+(ii.) 35%, step (iii.) 50% and step (iv.) 15%.

- Section Grade: $\frac{\text{Obtained score}}{\text{Total points}} \times 9 + 1$ (rounded off to one decimal place)
- Course Grade: $0.6 \times \text{Grade_Section_A} + 0.4 \times \text{Grade_Section_C}$ (see Assessment Policy for details)
- Good Luck!

Section C:

Total Points: 30

[5]

- 1. (a) Use a suitable Riemann sum to evaluate the following limit:
 - $\lim_{n\to\infty} \left[\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right].$

(b) Let the function
$$f$$
 be defined as $f(x) := \frac{x^2}{(1+3x)^2}$, for $x \in \mathbb{R} \setminus \{-\frac{1}{3}\}$.

Show that the Maclaurin series of f is given by $\sum_{k=0}^{\infty} (-1)^k (k+1) \, 3^k \, x^{k+2} \quad \text{and}$

find the radius and the interval of convergence of the series. [5]

[Hint: Instead of obtaining the derivatives of f, using some known series may be wiser.]

2. (a) Let $I := \int_0^{\pi/6} \tan(x) e^{\sin(x)} dx$. Express the following integrals in terms of I. [5]

$$\int_0^{1/2} \frac{xe^x}{1-x^2} dx \quad \text{and} \quad \int_0^{1/2} \ln(1-x^2)e^x dx.$$

(b) The well-known gamma function $\Gamma:(0,\infty)\to\mathbb{R}$ is defined as the improper integral

$$\Gamma(x) := \int_0^\infty t^{x-1} e^{-t} dt, \text{ for } x > 0.$$

Show that, for $0 < x \le 1$, $\Gamma(x)$ indeed exists and $\Gamma(x+1) = x\Gamma(x)$. [3+2]

[Hint: Splitting the integral over (0,1] and $[1,\infty)$ will help.]

3. (a) Suppose that $g: \mathbb{R} \to \mathbb{R}$ has a continuous derivative and the bivariate function f is defined as $f(x,y) := g\left(\frac{x+y}{x-y}\right)$ for $x \neq y$.

Find the numerical value of
$$x \frac{\partial f(x,y)}{\partial x} + y \frac{\partial f(x,y)}{\partial y}$$
 (for $x \neq y$). [5]

(b) Let $g: \mathbb{R} \to \mathbb{R}$ be continuous and $f: \mathbb{R}^2 \to \mathbb{R}$ be defined as f(x,y) := g(x)g(y). Suppose that $\iint_D f(x,y) \, \mathrm{d}A = 4$, where D is the square $[a,b] \times [a,b]$ $(a,b \in \mathbb{R})$.

Find
$$\int_a^b g(x) dx$$
 and $\int_a^b \int_y^b f(x, y) dx dy$. [2+3]

Section A: [Follow the four-step procedure]

Total Points: 20

4. Prove that the following series

[2+2+2]

$$\sum_{k=1}^{\infty} (-1)^k \frac{2k+3}{(k+1)(k+2)}$$

converges. Determine, also, whether the series converges absolutely.

In the evaluation-step, you must comment on the value of the infinite sum. For this, split $\frac{2k+3}{(k+1)(k+2)}$ in terms of simple/partial fractions $\frac{\text{constant}}{\text{simple expression in }k}$.

5. Suppose that $\{a_k\}_{k\in\mathbb{N}}$ is a real-valued sequence and f(x) is formally defined as the series of functions

$$f(x) := \sum_{k=1}^{\infty} a_k \frac{1}{k^x}, \quad x \in \mathbb{R}.$$

Prove that if the series converges at some $x_0 \in \mathbb{R}$ i.e., $f(x_0)$ exists, then the series converges absolutely on the interval $(x_0 + 1, \infty)$.

Hint: Argue and use the boundedness of $\left\{\frac{a_k}{k^{x_0}}\right\}_{k\in\mathbb{N}}$ and $x=x_0+x-x_0$.

In the evaluation-step, comment on the existence of $f(x_0+1)$.

6. Prove that [3+4+1]

$$\lim_{n \to \infty} \int_1^2 e^{-nx^2} \, dx = 0.$$