Course	:	Final	Examination	Introduction	to	Investment	Theory

Code : 191515603

Date : November 3, 2010

All answers must be motivated You may use an electronic calculator Answers may be written in English or Dutch Lots of success !

- 1. Two bonds X and Y, both of which mature in exactly two years from now, have face values of 100. Coupons are paid annually. A coupon payment has just been made in both cases. Bond X has a coupon rate of 13% and stands at a price of 105. Bond Y has a coupon rate of 5% and stands at a price of 91.25.
 - (a) Calculate the 1-year and 2-year annual spot rates.
 - (b) If I invest \in 1000 one year from now, how much return I expect one year thereafter?
 - (c) Let λ_X and λ_Y be the yields of the two bonds. Calculate their durations.
- 2. An investor intends to construct a portfolio P consisting entirely of a mixture of assets A and B. Short-selling is not allowed. Let r_A , r_B and r_P denote the rates of return of A, B and \overline{P} respectively. We are given the following estimates: $\overline{r}_A = 0.10$, $\overline{r}_B = 0.20$, $\sigma_A = 0.20$ and $\sigma_B = 0.30$. Assuming that our objective is the minimization of the standard deviation σ_P of our portfolio, what proportion of available funds should be invested in A and what proportion in B if the rates of return of A and B are:
 - (a) perfectly positively correlated ($\rho_{AB} = +1$);
 - (b) uncorrelated $(\rho_{AB} = 0);$
 - (c) perfectly negatively correlated ($\rho_{AB} = -1$).
- 3. Suppose that the spot price of gold today is \in 300 per ounce and the continuously compounded risk-free rate is 5%. There are no carrying costs with holding gold but gold can be leased instead at a rate of 2% per year, assumed to be paid continuously.
 - (a) What is the price of a gold futures with delivery in 6 months?(<u>Hint:</u> Carrying gold is actually yielding a return).
 - (b) The owner of some gold would like to borrow $\in 30,000$ today and in six months repay the loan in gold instead of euros (This is called a gold-linked note). Suppose the contract calls for the owner of the gold to deliver 100 ounce of gold in six months. What additional cash payment P needs to be made at delivery in order

for both the owner of gold and the lender to be willing to enter into the contract? (<u>Hint:</u> Set up a transaction table).

4. Consider a single-period binomial model where the "stock" is the market portfolio and $\Delta t = 1/52$ (that is, one week). Assume the volatility of the market return to be $\sigma = 20\%$ per year. A consistent way to define the binomial parameters is to set

$$u = e^{\sigma\sqrt{\Delta t}}$$
 and $d = e^{-\sigma\sqrt{\Delta t}}$.

The current risk-free interest rate is 5%, compounded weekly. The present price of the market portfolio is $S = \notin 100$.

(a) Compute the risk-neutral probability q of the market going up.

(<u>Hint:</u> q can be calculated by making sure that the risk-neutral formula holds for the underlying stock; that is, $S = \frac{1}{R}[quS + (1-q)dS]$).

- (b) Use risk-neutral valuation to compute the price V of a European option with payoff $V_u = \in 150$ and $V_d = \in 50$.
- (c) Replicate the option of part (b) by forming a portfolio in the market and the risk-free bond. What is the option's beta?

(<u>Hint:</u> Betas are additive. Use the market's beta and the bond's beta to solve the problem).

Points:

1	a	:	5	2	a	:	5	3	a	:	5	4	a	:	5
	b	:	5		b	:	5		b	:	5		b	:	5
	с	:	5		с	:	5						с	:	5

Total: 55 + 5 bonus points = 60 points