Theory of Partial Differential Equations

Final Exam (155010)

2014.01.29

Name:

Student ID #:

Major (opleiding):

Exercise	01		02	03		04 or 05	\sum
	(a)	<i>(b)</i>		(a)	<i>(b)</i>		
Max	5	4	9	4	4	10	36
Grade							

Guidelines

• This is an open book exam: you may consult one (1) book—the course textbook or any other.

• You may also use your class (HC) notes, practice session (WC) notes, homework assignments and my typed-in course notes.

• Select and solve only one of the two problems 04 and 05; working on both means the worst will be graded.

• Read the statement of each problem carefully or you may end up solving an entirely different problem!

• Theorems and formulas in the book and/or in my typed-in notes **may be used without proof**, **unless explicitly stated otherwise**. Formulas derived in homework or exercise problems may also be used, but please write down which HW/WC problem set you copy them from.

• If in doubt about anything, please do not hesitate to ask the proctor overseeing the exam for a clarification.

01. Consider the first order, quasilinear partial differential equation

$$-y U_x + x U_y = x U. (1)$$

(a) Determine the characteristics of (1).

(b) Find the solution to (1) corresponding to the data U(0, y) = 1, if it exists. (If it does not, explain why not.)

02. Solve for U the following initial-boundary value problem for the diffusion equation:

$U_t(x,t)$	=	$U_{xx}(x,t)$,	for all $0 <$	x < 1 and $t > 0$,	
U(x,0)	=	$\sin\left(\frac{\pi}{2}x\right) + 3,$	for all $0 \leq$	$\leq x \leq 1, \tag{2}$	I
		1 and $U_x(1,t) = 0$,	for all $t >$	> 0.	

[Note: Derive the eigenvalues λ_n and eigenfunctions X_n explicitly; do not just copy them from your notes/the book. You may, nevertheless, assume that $\lambda_n \leq 0$ for all n: that is, no positive eigenvalues exist.]

03. Consider the following initial–boundary value problem for the wave equation on the half-line:

$U_{tt}(x,t)$	=	$U_{xx}(x,t)$,	for all	$1 x \ge 0 \text{and} t > 0 ,$	
U(x,0)	=	f(x),	for all	$1 x \ge 0$,	(2)
$U_t(x,0)$	=	0,	for all	$1 x \ge 0 ,$	(3)
U(0,t)	=	0,	for all	t > 0.	

(a) Solve the problem for $f(x) = \sin(x)$.

(b) Let $x_* > 0$ be arbitrary but fixed. Find all functions f for which the displacement at x_* is zero in the long term—that is, for which there exists a time instant T such that $U(x_*, t) = 0$ for all $t \ge T$.

04. Consider the following first-order problem on the plane:

$$\begin{array}{rcl}
-y \, U_x(x,y) + x \, U_y(x,y) &= g(x,y) \,, & \text{with} & (x,y) \in \mathbf{R}^2, \\
U(x,0) &= f(x) \,, & \text{with} & x \ge 0.
\end{array} \tag{4}$$

A smooth solution U(x, y) to this problem does not always exist. Explain in detail why this is so, formulate conditions for f and g which guarantee that such a smooth solution U(x, y) exists and derive an explicit formula for it (possibly in another coordinate system).

[Note: You are <u>not</u> asked to formulate the <u>best</u> possible conditions under which U exists; exercise your judgement! Also, 'explain in detail' means that, ideally, you would submit a clearly—and <u>cleanly</u>—written, intelligent discussion of the issue at hand with a balance between the quantitative (formulas) and the qualitative (interpretation). In plain speak: neither a list of formulas without explanation nor wordy explanations without actual mathematics.]

05. Let Ω be the region outside the unit disk centered at the origin:

$$\Omega = \left\{ (x,y) \, | \, x^2 + y^2 > 1 \right\} \, .$$

Naturally, the boundary $\partial \Omega$ is the unit circle:

$$\partial \Omega = \{ (x, y) \, | \, x^2 + y^2 = 1 \} \; .$$

Additionally, let U be the unique smooth and bounded solution to the following problem:

$$U_{xx}(x,y) + U_{yy}(x,y) = 0, \quad \text{for all} \quad (x,y) \in \Omega, \\ U(x,y) = f(x,y), \quad \text{for all} \quad (x,y) \in \partial\Omega.$$
(5)

Derive a formula for U(x, y) by using any method you wish.

[*Hint: One way to proceed is by using our work in class and/or the book to rewrite (5) in polar coordinates* (r, θ) *and then working in the coordinate system* $(s, \theta) = (1/r, \theta)$ *. If you need the expressions for* $U_{xx} + U_{yy}$ *in polar coordinates and/or Poisson's formula for harmonic functions on a disk, you may assume them to be known.*]

Good luck!