Applied Functional Analysis (191506302)

Tuesday, January 29, 2013,

08.45 - 11.45

- An explanation to every answer is required
- You can make use of a calculator
- (Part of) the score to exercises 2 and 6 may be earned by homeworks; see the score table at the end
- 1. We consider the space $C_b[0,\infty)$ of bounded continuous real valued functions on $[0,\infty)$ equipped with the norm $\|\cdot\|_{\infty}$ given by $\|f\|_{\infty} = \sup_{x\geq 0} |f(x)|$, for all $f \in C_b[0,\infty)$. Let E be the linear subspace of $C_b[0,\infty)$ consisting of all functions $f \in C_b[0,\infty)$ for which $\lim_{x\to\infty} f(x)$ exists.
 - (a) Show that E is a closed subspace of $C_b[0,\infty)$.
 - (b) The linear functional $\varphi : E \to \mathbb{R}$ is defined by $\varphi(f) = \lim_{x \to \infty} f(x)$. Show that φ is bounded and compute $\|\varphi\|$.
- 2. Let M be a linear subspace of a normed vector space E and N be a linear subspace of E^* (the dual of E). We define

$$M^0 = \{ \varphi \in E^* | \varphi(x) = 0 \text{ for all } x \in M \}$$

 $N_0 = \{ x \in E | \varphi(x) = 0 \text{ for all } \varphi \in N \}$

- (a) Take $E = L^3(-1, 1)$ and $M = \{f \in L^3(-1, 1) | f(x) = 0 \text{ for all } 0 \le x \le 1\}$. Identify M^0 as a subspace of $L^{\frac{3}{2}}(-1, 1)$, (the dual of $L^3(-1, 1)$). What functions are element of M^0 ?
- (b) Show (in general) that $(M^0)_0 = M$ in case M is closed (hint: use the theorem of Hahn Banach).
- 3. Consider the real Hilbert space ℓ^2 with the usual inner product.
 - (a) Let $T = \{y_1, y_2, ...\}$, where the vectors $y_1, y_2, ...$ in ℓ^2 are given by

$$y_1 = (1, 0, -2, 0, 0, ...), y_2 = (0, 1, 0, -2, 0, 0, ...)$$

 $y_3 = (0, 0, 1, 0, -2, 0, 0, ...), \text{ etc.}$

Find an orthonormal basis (that is, a maximal orthonormal system) for T^{\perp} .

(b) Let $z = \left(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\right)$. Find the vector $h \in T^{\perp}$ which satisfies

$$||z - h|| = \min \{ ||z - x|| : x \in T^{\perp} \}.$$

4. Consider the complex Hilbert space $L^2(-1,2)$ with the usual inner product given by $(f,g) = \int_{-1}^2 f(t)\overline{g(t)}dt, f,g \in L^2(-1,2)$. The linear map $A: L^2(-1,2) \to L^2(-1,2)$ is defined by

$$(Af)(x) = (ix)f(x), \quad f \in L^2(-1,2).$$

- (a) Show that A is bounded and compute ||A||.
- (b) Determine the adjoint A^* of A.
- 5. Let $A: L^2(0,1) \to L^2(0,1)$ be the linear operator on the complex Hilbert space, defined by

$$Af(x) = \int_0^x f(t)dt$$
 for all $f \in L^2(0,1)$

The adjoint of A is denoted by A^* .

- (a) Show that A does not have any eigenvalue.
- (b) Prove that A^*A is a self adjoint and compact operator.

One can prove that the system $\{\varphi_k(x)|k=0,1,2,...\}$ with $\varphi_k(x) = \sqrt{2}\cos((k+\frac{1}{2})\pi x)$ is a maximal orthonormal system in $L^2(0,1)$ of eigenfunctions of A^*A .

- (c) Give the spectral decomposition of A^*A .
- 6. By $\ell_{\mathbb{C}}^2$ we denote the normed complex vector space of all sequences $\underline{a} = (a_1, a_2, ...)$ of complex numbers with $\|\underline{a}\| = \left(\sum_{n=1}^{\infty} |a_n|^2\right)^{1/2}$ is finite. Define $A : \ell_{\mathbb{C}}^2 \to \ell_{\mathbb{C}}^2$ by $A\underline{a} = (a_1, 2a_2, 3a_3, ...)$. Determine whether A is a closed operator where the domain $\mathcal{D}(A) = \{\underline{a} \in \ell_{\mathbb{C}}^2 | \sum_{n=1}^{\infty} |na_n|^2 \text{ is finite} \}.$
- 7. Let E be a (complex) Banach space and $A \in BL(E, E)$.
 - (a) Suppose λ_1 and λ_2 are different eigenvalues of A with corresponding eigenvectors f_1 and f_2 , respectively. Show that f_1 and f_2 are linearly independent.
 - (b) Suppose A is invertible. Show that

$$\sigma(A^{-1}) = \left\{\frac{1}{\lambda} | \lambda \in \sigma(A)\right\}$$

(here $\sigma(A)$ is the spectrum of A).

GRADING POINTS

Total: 36+4=40 points

1.(a)3	2.(a) <u>3</u>	3.(a)3	4.(a)3	5.(a)2	6. <u>3</u>	7.(a)1
(b)3	(b) <u>3</u>	(b)2	(b)3	(b)2		(b)3
				(c)2		