Examination: Continuous Optimization

3TU- and LNMB-course, Utrecht January 16, 2012, 16.00-19.00

Ex. 1 Recall that the *affine hull* of a set $S \subset \mathbb{R}^n$ is defined by:

$$\operatorname{aff}\left(\mathcal{S}\right) = \left\{x \mid x = \sum_{i=1}^{k} \lambda_{i} x^{i}, \ x^{i} \in \mathcal{S}, \ \lambda_{i} \in \mathbb{R}, \ \sum_{i=1}^{k} \lambda_{i} = 1, \ k \geq 1\right\}$$

Consider a non-empty subset $S \subset \mathbb{R}^n$. Show that the set aff (S) is an affine space, *i.e.* aff (S) has the form aff $(S) = \overline{x} + V$ with $\overline{x} \in S$ and V a linear subspace of \mathbb{R}^n .

Ex. 2 Consider the convex program

(CO)
$$\min_{x \in \mathbb{R}^n} f(x)$$
 s.t. $g_j(x) \le 0, \ j = 1, \dots, m$,

with convex functions $f, g_j \in C^1(\mathbb{R}^n, \mathbb{R})$.

Show that $(\overline{x}, \overline{y})$ is a saddle point for the Lagrangian function L(x, y) of (CO) if and only if \overline{x} is feasible for (CO) and satisfies the KKT-conditions (Karush-Kuhn-Tucker conditions) with a multiplier vector $\overline{y} \ge 0$.

Ex. 3 Recall that in the set S_n of symmetric $n \times n$ -matrices, $A \bullet C$ denotes the "inner product", $A \bullet C = \sum_{i,j} a_{ij} c_{ij}$, $A = (a_{ij})$, $C = (c_{ij}) \in S_n$.

Consider the set of positive semidefinite $n \times n$ -matrices $S_n^+ := \{A \in S_n \mid x^T A x \ge 0 \ \forall x \in \mathbb{R}^n\}.$

- (a) Show that S_n^+ is a convex cone.
- (b) Verify the identity $x^T A x = A \bullet x x^T$ for $A \in S_n, x \in \mathbb{R}^n$.
- (c) Consider the dual cone of S_n^+ , $(S_n^+)^* := \{B \in S_n \mid B \bullet A \ge 0 \ \forall A \in S_n^+\}$. Show that the relation holds: $S_n^+ = (S_n^+)^*$ (i.e., S_n^+ is self-dual.)

Ex. 4

- (a) Let the feasible set be defined by $\mathcal{F} = \{x \in \mathbb{R}^n \mid g_j(x) \leq 0, j = 1, \ldots, m\}$, where the functions $g_j(x), j = 1, \ldots, m$, are convex on \mathbb{R}^n . Show that \mathcal{F} is a closed, convex set.
- (b) Is also the following converse true? For any $g: \mathbb{R}^n \to \mathbb{R}$ it holds:

$$\mathcal{F} := \{x \in \mathbb{R}^n \mid g(x) \le 0\} \text{ is convex } \Rightarrow g \text{ is convex on } \mathcal{F}$$

Hint: Prove it or find a counterexample.

Ex. 5 Apply the conjugate gradient method (see lecturesheets, Th.11.3) to a quadratic function $q(x) = \frac{1}{2}x^T A x + b^T x$ (A positive definite). (Recall $g_j := \nabla q(x_j)$; d_j are the search directions).

- (a) Show that the following recursion is true: $g_{j+1} = g_j + t_j A d_j$.
- (b) If we start with the direction $d_0 = -g_0$, then the following relations are true for any k, $0 \le k \le n-1$:

(1)
$$g_j^T g_i = 0 \quad \forall i, j, \ 0 \le i < j \le k$$
 and (2) $\operatorname{span} \{d_0, \dots, d_k\} = \operatorname{span} \{g_0, \dots, g_k\}.$

Hint: Induction wrt. k; You may use all facts proven for the method of conjugate directions in the course CO.

Recall: span $\{d_0, \ldots, d_k\}$ denotes the linear space spanned by d_0, \ldots, d_k .

Ex. 6 Consider the constrained minimization problem:

(P) min
$$x_2$$
 s.t. $g_1(x) := -x_1 \le 0$, $g_2(x) := x_1 - x_2^3 \le 0$.

- (a) Show that at the point $\overline{x} = (0,0)$ the MFCQ constraint qualification is not satisfied. Show further that \overline{x} is not a KKT point.
- (b) Show that $\overline{x} = (0,0)$ is the unique solution of (P). (It is even a strict local minimizer of order p = 1).

 Hint: Show this by direct verification.

Ex. 7 Given the program:

(P) min
$$x^2$$
 s.t. $q(x) := 1 - x \le 0$.

We consider the penalty problem $P_r: \min p_r(x) := x^2 + f(g^+(x))^2$ and the exact penalty problem $\hat{P}_r: \min \hat{p}_r(x) := x^2 + f(g^+(x))^2$ (Here $g^+(x) := \max\{0, g(x)\}$.)

- (a) Compute the solution \overline{x} of (P) with corresponding Lagrange multiplier (solve the system of KKT-conditions).
- (b) Compute the solutions x_r of P_r and the solutions \hat{x}_r of \hat{P}_r for r > 0.
- (c) Analyse the error $|x_r \overline{x}|$ and $|\hat{x}_r \overline{x}|$ for $r \to \infty$.

Points: 38+4=42 [mark: points/10 with a max of 10+]

1	:	3	2	:	5	3	a	:	2	4	a	:	3	5	a	:	2	6	a	:	3	7	a	:	2
						3	b	:	2	4	b	:	2	5	b	:	3	6	b		3	7	b	1	4
						3	c	:	3													7	c	•	1

A copy of the lecture-sheets can be used during the examination. Good luck!