Exam Game Theory (191521800)
University of Twente
November 11, 2021, 8:45-11:45h

This exam has 7 exercises.

Motivate all your answers! You may not use any electronic device.

This exam comes with a cheat sheet that contains most of the basic definitions. (See the last pages.) Other
necessary definitions are given in the questions. You are also allowed to bring your own cheat sheet (1 A4.
one-sided).

Noncooperative Game Theory

1. (24241 points) Consider the bimatrix game given by

12,14 7,16 12,15
(A*B)‘( 14,9 —1,1 5,8 )

(a) Compute all Nash equilibria of this game.
(b) Write down all conditions that define the correlated equilibria of this game.
(c) Explain in our own words (briefly!) how correlated equilibria extend the set of equilibria of a

strategic form game. Can you also quantify that claim with the given example?

2. (3 points) Consider the network routing game depicted below. There are two players i = 1,2. each of
which has to select one of the two (s,t;) paths. Let us call the available actions d for direct, and i for
indirect. All arcs e in the network have a cost c.(x) = x, with z as the number of players choosing arc
e.

Suppose that player 1 chooses first. and then player 2. Model this game as an extensive form game.
set up the payoff matrix of the corresponding strategic form game, and compute the pure Nash and
subgame perfect equilibria.

3. (2+4 points) A network cost sharing game is an atomic network routing game with latency (or cost)

functions on the arcs of the form £.(z) = 1.

(a) Show that this game always has a pure Nash equilibrium.
Use Rosenthal’s potential function p(P) = > p[le(1) + ..., €e(ne(P))].
(b) Show the price of stability is at most H,, where H,, is the n-th harmonic number, ie., H, =

n 1
i=1 1"




Cooperative Game Theory

4. (14343 points) Consider the following three player cooperative game (N, v).

S | {1} {2} {3} {12} {13} {23} {1,2,3}
uB)| 2 3 4 B 6 8 10

(a) Is it superadditive? Is it convex?
(b) Compute the core C(N,v) for this game, and express it as convex hull of its extreme points.

(c) Compute the Shapley value. Is the Shapley value of this game in the core?

5. (241 points) We call a game (N,v) with |N| = n a looser game if there exists exactly one player,
w.l.o.g. player n (the looser). such that

o(S) = {O ifne§

1 else

(a) Determine the Shapley value ®(N,v) of a looser game with |IN| =n.

(b) Determine the core C'(N,v) of a looser game.

Stochastic Game Theory
6. (143 points)

(a) Mention two differences between zero-sum stochastic games with discounted rewards and zero-
sum stochastic games with average rewards.

(b) Show that if («l, 72) and (7)., 72,) are two equilibrium points of a zero-sum discounted stochastic

game, then ”U;;(?Ti, = T)E(ﬂ'i*, 72,) for player k =1, 2.

7. (1+3+242 points) Consider the following irreducible stochastic game.

1 0 ‘
(3/4,1/4) (0,1) | -3
0 2 (1/2,1/2)
(0,1) (1/2,1/2) s=2
=1

The players optimize their average rewards. Player 1 uses stationary strategy (f>°) with f = ((1/2,1/2),1)
and player 2 uses strategy (g>°) with g = ((2/3,1/3), 1).

(a) Why is this game irreducible?

(b) Determine the value vector v, (f, g).

(c) Find a stationary strategy (f°°) for player 1 that results in a smaller value vector. (s B) <
vo(f, g) componentwise.

(d) How could you obtain average optimal strategies for the players? (Describe this in words: there
is no need for calculations.)

Total: 36 + 4 = 40 points



Basic definitions for MSc course on Game Theory

Noncooperative Game Theory

e Matrix games A € R™*" al = column j, a; = row 7 of a matrix A

Payoff row player (player 1) is pAq with p = mixed strategy row player and q =
mixed strategy column player. Payoff column player (player 2) is —pAq.

Maximin strategy p for row player achieves maximum in maxp ming pAq. Mini-
max strategy q column player achieves minimum in ming maxp pAq.

von Neumann Theorem: maxp ming pAq = ming maxp pAq for all (finite) A.

Entry (i,j) is saddlepoint if a;; > ai; for all k = 1,...,m and a;; < ay for all
k=1,...,n. In words: a;; is maximal in column a’ and minimal in row a;. aij =
saddlepoint <> strategies €' for player 1 and e; for player 2 are a (pure) Nash
equilibrium

e Bimatrix Games (A, B) both € R™*"

Payoft row player pAq with p = mixed strategy row player and q = mixed strategy
column player, payoff column player pBq.

Carrier of strategy p for row player is C(p) = {i € {1,...,m} : p; > 0}, likewise
for column player C(q) = {j € {1,...,n} : q¢; > 0}.

Nash equilibrium: strategy pair (p, q) such that pAq > p’Aq for all p’ and pBq >
pBq' for all q'.

Equilibrium principle: (p,q) is Nash equilibrium if and only if the pure strategies
C(p) are all best replies to q and the pure strategies C'(q) are all best replies to p.
In words: both player only play those strategies (with positive probability) that
give maximal payoff. This is equivalent with: e/ Aq > e*Aq for all j € C(p) and
allk=1,...,m and pBe; > pBe;, foralli e C(q) and all k = 1,...,n.

¢ Finite games G = (N, {S; }ien, {uitien)

N= set of n players, S; = set of pure strategies of player i, S = S; x -+ x §,, = set
of pure strategy profiles = set of possible outcomes. o; = mixed strategy of player

i, ui(s) = ui(s1,...,8n) = payoff player i if pure strategies s = (s1,...,8,) € S are
playved.
Nash equilibrium: Strategy profile ¢ = (o1,...,0,) such that for all players i.

Wlon o) = wlel,0 ) forall o,
Brouwer theorem: Every continuous function f : ¢ —+ C with C' compact and
convex has a fixed point x € C, that is, f(z) = z.

Kakutani theorem: Every upper semi-continuous and convex-valued correspon-
dence f on C (that is. for € C, f(z) C C), with C compact and convex, has a
fixed point x € C. that is. x € f(x).

Nash theorem: Every finite game G = (N, {S;}ien, {ui}icn) has a Nash equilib-
rium.



n—simplex A, = {(zo, ..

o) 2 0| g =1}

Correlated equilibrium: Probability distribution on outcome space (ps)ses. S being
the set of all strategy profiles S = (54, ...,5,), that is self-enforcing, meaning that
if the advice to player £ is to play pure strategy s;, then Zs_fes_f Dsgs_,We(Sg, 5-¢) =
ZSﬁEES_g Psgs_oue(sp, s—¢) for all s; € S;. Nash equilibria are (a special type of)
correlated equilibria.

Specifically, for two-player bimatrix games (A4, B), a probability distribution P =
(Pij)i=1,...m.j=1....m on the outcome space is a correlated equilibrium if

V strategies i = 1,....m: Z  Pii (aij —apj) >0forallk=1,...,m

V strategies j = 1,... Z pU. —byg)>0forallé=1,...,n

P = (pij) is a Nash equilibrium < P has rank 1 and is a correlated equilibrium.

e Extensive form games

Rooted directed tree with nodes v that correspond to either chance or decision
nodes of the players. Several decision nodes (of one player) can form an information
set h, meaning that the nodes v € h are indistinguishable for the player (hence,
the chosen actions at all v € & must be identical).

Extensive form game has perfect recall if players recall their own past moves.

Extensive form game has perfect information if all information sets h are trivial,
that is, consist of one node only.

Pure strategy s; of player i: Precisely one action for each information set h of
player ¢

Behavioral strategy b; of player i: For each information set h of player i, b;(h) is a
probability distribution over the possible actions at A.

Nash equilibrium of an extensive form game: defined as Nash equilibrium of the
corresponding strategic form game. (The pure strategies of player i in that strategic
form game are formed by combination of one action of player i at all its informations
sets h.)

Outcome equivalence: Two strategies of player i are outcome equivalent if, for each
pure strategy profile s_; of the other players, they generate the same distribution
over the end nodes of the tree.

Subgame perfect equilibrium: Behavioral strategy that is a Nash equilibrium for
each subgame induced by the game tree. (In particular, it is a Nash equilibrium
for the whole game tree.)

Kuhn theorem: If extensive form game has perfect recall, any mixed strategy o
of the corresponding strategic form game has an outcome equivalent behavioral
strategy b.



Cooperative Game Theory
e Cooperative games (N, v)

— N = set of n players, v : 2 — R value function, v(S) = worth of coalition S,
x € R" (usually) denotes a payoff vector, and for coalition S C N, z(S) := 3, g ;.

— Game (N, v) is essential if 3,y v({i}) < v(N).

— Pre-imputation set = all efficient payoff vectors = I*(N,v) = {x € R" | z(N) =
v(N)}.

— Imputation set = all efficient and individually rational payoff vectors = I(N,v) =
{xeR" | z(N)=v(N), z; >v({i}) Vie N}.

— Core C(N,v) = {x e R" | z(N) = v(N), z(S) >v(S)V S C N}.

— Payoff vector z € I(N,v) is dominated via coalition S if there exists y € I(N,v)
such that y; > z; for all i € S and y(5) < v(S5).

— Domination core DC(N,v) = {x € I(N,v) | x not dominated} = I(N,v) \
Unzscn D(S) where D(S) := {z € I(N,v) | z dominated via S by somey € I(N,v)}.

e Special types of games

— Game (N, v) is supper-additive if v(SUT) > v(S) +v(T) VY SNT = 0.

— Game (N,v) is convex if v : 2¥ — R is supermodular, where supermodularity
of v means v(SUT) +v(SNT) > v(S) +v(T) V S,T, or equivalently, for all
SCTCN\{i}, v(Su{i}) —v(S) L v(T U {i}) —»(T).

— Note that a convex game (N, v) is also super-additive. but not vice versa.

— Game (N,v) is balanced if for each balanced vector A, 3 gcy Asv(S) < v(N),
where vector A € R(2*) > 0 is balanced if for all players i. Y isieghg=1.

— Bondareva-Shapley Theorem: C(N,v) # 0 if and only if (N, v) balanced.

— Simple games: v(S) € {0,1} V.S C N and v(N) = 1. Player i is veto player in a
simple game if (v(S) =1=1¢€ 5).

— The T-unanimity game, for 7' C N, is the simple game (N, uy) with

T T E S
uT(S)={ HESw

0 otherwise.
The set of all T-unanimity games ugp, § # T C N, forms a basis for the gl g
dimensional vector space of all cooperative games with |N| players.

e Solution values, concepts, etc.

— Marginal (payoff) vector m?: for given permutation ¢ of N, this is the payoffs
when players enter a room in order o and every player is handed out the marginal
contribution. mg = v(e(1),...,0(i) —v(e(1),...,0(i — 1)).

— Shapley value ®(N,v) := % S, m. Also. foralli € N, ¢;(N,v) = 5 2 siigs [S|H(n—
15| = D}(v(S U {i}) — v(S5)).



— Nucleolus = unique payoff vector x that lexicographically minimizes the vector of
excesses (e(S,x))scn. where excess of coalition S at x, e(S, x) := v(S) —z(S). (In
particular, it minimizes the maximal excess among all coalitions S.)

— Weber set W(N,v) = conv{m” | ¢ permutation of N}. C(N,v) C W(N,v).

— Theorem (Shapley, Ichiishi): C(N,v) = W(N,v) if and only if (N, v) convex.

— Harsanyi dividends: A(T) = v(T) — Y g7 A(S), where A(f) = 0.

— Harsanyi theorem: For all i € N, ¢i(N,v) = Y 7. %—) with ®(N,v) = Shapley
value.

— Null player i: v(S U {i}) —v(S) =0 for all S C N.

— Symmetric players i,j: v(SU {i}) = v(SU{j}) for all S with i,j & S.

— Value W is efficient if U(N) = v(N), additive if ¥(v+w) = ¥(v)+ ¥ (w), symmetric
if ¥; = 4; for symmetric players i, j, and has the null player property if ¢; = 0 for
null players 1.

— Shapley theorem: Shapley value = unique payoff vector that is efficient. additive,
symmetric. and has the null player property.

Price of Anarchy for (Atomic) Network Routing

— An (atomic) network routing game is a directed graph G = (V. E). with latency
(or cost) functions .(x) for each arc e € E. n players i = 1,....n and origin-
destination pairs (s;,t;) with s;,¢; € V for all i. The strategy space of player i
consists of all (s;, ¢;)-paths P; in G.

— The (atomic) network routing game is symmetric if (s, t;) = (s, t3) for all players
i k.

— A strategy profile is (P,..., P,) with P, € P;

— The latency (or cost) of player i in profile P equals 3", p, Le(ne(P)), with n.(P) =
total number of players k with e € Py, or n.(P) =", [{e} N P,|.

— The total latency (or “social cost™) is /(P) := Y"1, > eep, le(ne(P)) = 3 cpme(P)-
£e(ne(P)).

— The price of anarchy (for the total latency)is maxpe ng £(P)/€(OPT) where OPT =

strategy profile minimizing total latency £(-) and NE = set of all Nash equilibrium
strategy profiles.

— The price of stability (for the total latency) is minpey g £(P)/¢(OPT) where OPT =
strategy profile minimizing total latency ¢(-) and N E = set of all Nash equilibrium
strategy profiles.

— A potential function for strategy profile P is Yecplle(l) + -+ + Le(n.(P))] (also
known as Rosenthal potential)



