UNIVERSITEIT TWENTE

Faculteit Elektrotechniek, Wiskunde en Informatica

Exam Measurability and Probability (1915703401) on Monday, January 23, 2017, 8:45 – 11:45 hours.

The solutions of the exercises should be clearly formulated and clearly written down. Moreover, you should in all cases include a convincing argument with your answer. With this exam a calculator is **not** permitted. Also a formula sheet is **not** permitted.

1. Consider the measurable space (Ω, \mathcal{B}, m) with $\Omega = [-1, 1]$, \mathcal{B} is the collection of Borel sets and m is the Lebesgue measure. Consider the three functions: $f_1, f_2, f_3 : \Omega \to \mathbb{R}$ defined by:

$$f_1(x) = x$$
, $f_2(x) = x^2$, $f_3(x) = x^3$

Let \mathcal{F}_1 be the smallest σ -algebra such that f_1 as a mapping from (Ω, \mathcal{F}_1) to (Ω, \mathcal{B}) is measurable. We define \mathcal{F}_2 and \mathcal{F}_3 similarly as the smallest σ -algebras such that f_2 and f_3 respectively are measurable.

- a) Verify whether $\mathcal{F}_1 \subset \mathcal{F}_2$, $\mathcal{F}_1 = \mathcal{F}_2$ or $\mathcal{F}_1 \supset \mathcal{F}_2$.
- b) Verify whether $\mathcal{F}_1 \subset \mathcal{F}_3$, $\mathcal{F}_1 = \mathcal{F}_3$ or $\mathcal{F}_1 \supset \mathcal{F}_3$.
- c) Verify whether $\mathcal{F}_1 \subset \mathcal{B}$, $\mathcal{F}_1 = \mathcal{B}$ or $\mathcal{F}_1 \supset \mathcal{B}$.
- 2. Consider the measure space (\mathbb{R} , \mathcal{M} , m). Investigate the convergence of:

$$\lim_{n\to\infty}\int_1^e\frac{n}{(x+n)x^{1+1/n}}\,\mathrm{d}m$$

If you use any theorems from the book then clearly formulate that theorem.

3. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$. Investigate the convergence of:

$$\lim_{n\to\infty}\int_0^n\frac{1}{1+nx\ln x}\,\mathrm{d}m$$

If you use any theorems from the book then clearly formulate that theorem.

4. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and suppose $\Omega = \bigcup_{n=1}^{\infty} E_n$ where $\{E_n\}$ is a collection of pairwise disjoint measurable sets such that $\mu(E_n) < \infty$ for all $n \ge 1$. Define ν on \mathcal{F} by:

$$\nu(F) = \sum_{n=1}^{\infty} 2^{-n} \frac{\mu(F \cap E_n)}{\mu(E_n) + 1}$$

a) Prove that v is a measure on (98,38). $(\mathcal{A}, \mathcal{F})$

- b) Let $F \in \mathcal{F}$. Show that $\mu(F) = 0$ if and only if $\nu(F) = 0$.
- c) Find explicitly two positive integrable functions f and g such that:

$$v(A) = \int_A f \,\mathrm{d}\mu, \qquad \mu(A) = \int_A g \,\mathrm{d}\nu.$$

for all $A \in \mathcal{F}$.

see reverse side

Exam Measurability and Probability (1915703401) on Monday, January 23, 2017, 8:45 – 11:45 hours.

5. Consider the probability space $(\Omega, \mathcal{F}, \mu)$ with $\Omega = [0, 2]$, $\mathcal{F} = \mathcal{M}_{[0,2]}$ and $\mu = \frac{1}{2}m_{[0,2]}$. Let *X* and *Y* be random variables on the product space $(\Omega \times \Omega, \mathcal{F} \times \mathcal{F}, \mu \times \mu)$ defined by:

 $X(\omega_1, \omega_2) = \omega_1 \omega_2, \qquad Y(\omega_1, \omega_2) = 2\omega_1^2$

- a) Find the (cumulative) distribution function F_X
- b) Compute $\mathbb{E}(X)$
- c) Compute P(X > Y)
- d) Compute $\mathbb{E}(X \mid Y)$
- 6. Consider the probability space $(\Omega, \mathcal{F}, \mu)$ with $\Omega = [0, \infty)$, $\mathcal{F} = \mathcal{M}_{[0,\infty)}$. Let μ be such that

$$\mu([a,b]) = \int_a^b \frac{1}{(x+1)^2} \mathrm{d}m$$

Define a sequence of random variables:

 $X_n(\omega) = \max\{0, n^2 - n^5 | \omega - n | \}$

Which of the following statements are true? (Justify your answers).

- a) $X_n \to 0$ in probability.
- b) $X_n \rightarrow 0$ almost surely.
- c) $X_n \rightarrow 0$ pointwise.
- d) $X_n \rightarrow 0$ in L_1 -norm.
- e) $X_n \rightarrow 0$ in L_2 -norm.

For the questions the following number of points can be awarded:

Exercise	1.	9 points	Exercise	4.	9 points
Exercise	2.	9 points	Exercise	5.	9 points

Exercise 3. 9 points Exercise 6. 9 points

The final grade is determined by adding 6 points to the total number of points awarded and dividing by 6.