Final exam for the course 191551200 "Scientific Computing" Resit. July 5, 2017, 08:45–10:45

It is not allowed to use any electronic equipment or books. All the answers must be clearly and fully motivated.

- 1. (a) (5 p) Give a definition of the singular value decomposition (SVD) of a matrix $A \in \mathbb{C}^{m \times n}$. Does it exist for all $A \in \mathbb{C}^{m \times n}$?
 - (b) (10 p) Using the SVD, establish and prove a relation between the singular values of a matrix $A \in \mathbb{R}^{m \times n}$ and the eigenvalues of $A^T A$.
- 2. (5p) For a symmetric matrix $A \in \mathbb{R}^{n \times n}$, give a definition of the Cholesky factorization. Does it exist for all symmetric $A \in \mathbb{R}^{n \times n}$?
- 3. (5p) When solving a problem on a computer by a numerical algorithm, we can expect three kinds of errors. Which ones?
- 4. A linear system Ax = b has to be solved for given nonsingular $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$.
 - (a) (5p) For a nonsingular $M \in \mathbb{R}^{n \times n}$, write down the preconditioned linear system $\widetilde{A}\widetilde{x} = \widetilde{b}$, where the preconditioner M is applied from the right. Specify $\widetilde{A}, \widetilde{x}, \widetilde{b}$ in terms of A, x, b, M.
 - (b) (10p) Rewrite iterative method

$$x_{k+1} = x_k + M^{-1}(b - Ax_k) \tag{1}$$

in terms of \widetilde{A} , \widetilde{x}_k and \widetilde{b} . You get an iterative scheme for solving the preconditioned system $\widetilde{A}\widetilde{x} = \widetilde{b}$. How is this scheme called?

- (c) (5p) Which kind of convergence, linear or superlinear, would you expect for method (1)? Why?
- 5. (a) (5p) Let $\Lambda(A)$ denote the spectrum of $A \in \mathbb{R}^{n \times n}$. Assume there exist matrices $V \in \mathbb{R}^{n \times k}$ and $H \in \mathbb{R}^{k \times k}$, k < n, such that AV = VH. What can be said about $\Lambda(A)$ and $\Lambda(H)$? No proof is required. How is the column space of V called in this case?
 - (b) (10p) The eigenvalue problem $Ax = \lambda x$ is solved by the Arnoldi method. After k steps of the Arnoldi process are carried out, it turns out that in the familiar matrix \underline{H}_k we have $|h_{k+1,k}| < 2 \cdot 10^{-16}$. Prove that all the eigenvalues of H_k are good approximations to some of the eigenvalues of A.
- 6. (7p) A nonlinear system of equations F(x) = 0 has to be solved for $F : \mathbb{R}^n \to \mathbb{R}^n$. Formulate an inexact Newton iteration method for solving F(x) = 0.

See the other side

1

- 7. (8p) The nonlinear system F(x) = 0 as defined in the previous question arises at each step of the implicit trapezoidal rule method applied to solve an ODE system $y' = f(y), f : \mathbb{R}^n \to \mathbb{R}^n$. Specify F in terms of f, time step size $\tau > 0$ and possibly some other values.
- 8. (5p) Let f be a function $f : \mathbb{R}^n \to \mathbb{R}$. Formulate the steepest descent method to solve $f \to \min$.
- 9. (10p) Let $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{k \times k}$. Finish and prove the relation $(A \otimes B)^T = \dots$

The grade is determined as G = (10 + p)/10, where p is the total number of points earned.