Time Series Analysis (& SI)—191571090

(The first 1.5 hours it is CLOSED BOOK. The second 1.5 hours is OPEN BOOK.)

Date: 30-10-2015 Place: THERM Time: 08:45–11:45

1. CLOSED BOOK: Three questions:

- (a) Have a look at the above realization $x_1, ..., x_{50}$ of the AR scheme $X_t = aX_{t-1} + \epsilon_t$. What is your guess for $\mathbb{E}(\epsilon_t)$ and *a* and σ_{ϵ} ?
- (b) What is definition of *cross covariance function* of two stochastic processes Y_t and X_t .
- (c) In the notes it is claimed that the standard biased estimator

$$\hat{r}_N(k) := \frac{1}{N} \sum_{t=0}^{N-|k|-1} (X_{t+|k|} - \hat{m}_N) (X_t - \hat{m}_N)$$

has two clear advantages over the unbiased estimator $\frac{1}{N-|k|}\sum_{t=0}^{N-|k|-1}(X_{t+|k|}-\hat{m}_N)(X_t-\hat{m}_N)$. Mention at least one of the two advantages.

- 2. **CLOSED BOOK:** Consider the MA scheme $X_t = \epsilon_t + b\epsilon_{t-1}$ and suppose that |b| < 1 and that $\mathbb{E}\epsilon_t = 0$.
 - (a) Determine r(k) in terms of b
 - (b) Determine the one-step ahead predictor $\hat{X}_{t+1|t}$.
 - (c) Compute the mean square prediction error $\mathbb{E}(\hat{X}_{t+1|t} \hat{X}_t)^2$
 - (d) The standard predictor $\hat{X}_{t+1|t}$ has access to the present and entire past of X_t . We could also choose to estimate X_{t+1} as a function of the present X_t alone: determine the $c \in \mathbb{R}$ that minimizes $\mathbb{E}(X_{t+1} cX_t)^2$
 - (e) For the optimal c of the previous part compute $\mathbb{E}(X_{t+1} cX_t)^2$. Is it less than σ_{ϵ}^2 ?
 - (f) Your answers for (a–e) where derived under the assumption that |b| < 1. Which of the answers of (a–e) still hold if |b| > 1?

- 3. **OPEN BOOK:** Suppose X_t is iid normally distributed white noise with variance $\sigma^2 > 0$. Suppose we know that the mean is zero. Given are samples x_1, \ldots, x_N .
 - (a) Show that the maximum likelihood estimator of σ^2 is $\hat{\sigma}_{MI}^2 = \frac{1}{N} (\sum_{i=1}^N x_i^2)$.
 - (b) Is $\hat{\sigma}_{ML}^2$ unbiased?
 - (c) Is $\hat{\sigma}_{ML}^2$ efficient? [you may use that $\mathbb{E}(Z^4) = 3\sigma_Z^4$ for normally distributed Z]
- 4. **OPEN BOOK:** In Exercise 7.7 of the notes it is claimed if X_t is a zero mean AR(1) process, $X_t = aX_{t-1} + \epsilon_t$, then the estimate $\hat{\theta}$ of the model $X_t = \theta X_{t-1} + \tilde{\epsilon}_t$ based on *N* samples of X_t satisfies

 $\operatorname{var}(\hat{\theta}) \approx (1-a^2)/N.$

- (a) Explain in words why var($\hat{\theta}$) does not depend σ_{ϵ} .
- (b) The formula implies that a = 0.9 is "easier" to estimate than a = 0.5.

Explain in words that this makes sense using that $r_X(k) = \frac{\sigma_e^2}{1-a^2}a^{|k|}$.

5. **OPEN BOOK:** Suppose X_t is zero mean normally distributed WSS process with covariance function

$$r_X(k) = \begin{cases} 4 & \text{if } k = 0\\ 2 & \text{if } k = \pm 1\\ 0 & \text{elsewhere} \end{cases}$$

How many samples N of X_t should we collect before the estimate $\hat{r}_N(0)$ has a standard deviation of less than 0.01?

6. **OPEN BOOK:** Let U_t and V_t be two zero mean WSS processes and suppose the two processes are uncorrelated. Assume further that the system \mathcal{H} is LTI. In the notes it is proved that frequency response $\hat{h}(\omega)$ of the system equals

$$\hat{h}(\omega) = \frac{\phi_{yu}(\omega)}{\phi_u(\omega)}$$

for scheme (a) of the figure below. Does the result also hold for scheme (b) of the figure below? If so, show it. If not, derive a formula for $\hat{h}(\omega)$ in terms of $\phi_{yu}(\omega)$ and $\phi_u(\omega)$.

problem.	T	2	3	4	5	6
points: 3-	+2+2	2+2+2+2+2+3	2+2+3	2+2	2	3

Exam grade is $1 + 9p/p_{\text{max}}$.