Exam Mastermath / LNMB MSc course on Discrete Optimization January 10, 2022, 13:30 – 16:30

- Allowed materials are 4 pages of "cheat sheet" (written on both sides).
- The exam consists of seven problems. You have a bit less than 1/2 h per problem.
- Please start a new page for every problem.
- Each question is worth 10 points. The total is 70. You need 35 points to pass.
- Relevant problem definitions, e.g. for NP-hardness, appear at the end of the exam.

Exam Questions

Problem 1 (Spanning Trees) Let G = (V, E) be an undirected, connected graph, and let $w : E \to \mathbb{R}_{\geq 0}$ be a non-negative weight function on the edges of G. Give a polynomial time algorithm that computes a spanning tree T of G that minimizes the maximum weight of any edge in T, that is, it should compute a spanning tree T^* to minimize the function

$$f(T) := \max\{w(e) \mid e \in T\}$$

among all spanning trees T of G. Prove the correctness of your algorithm, and briefly argue about its computation time. [Hint: A greedy algorithms works.]

Problem 2 (Hardness of Approximation) Given an undirected, connected graph G = (V, E) with $|V| \geq 2$, the "lean spanning tree" (LST) problem is to find a spanning tree T of G that minimizes the maximal degree of the nodes in T. To be precise, we want a spanning tree $T = (V, E_T)$, $E_T \subseteq E$, minimizing $\max_{v \in V} d_T(v)$, where $d_T(v)$ is the degree of node v in T. Assuming $P \neq NP$, show that there cannot be an α -approximation algorithm for the LST problem with $\alpha < \frac{3}{2}$. [Hint: What is an LST with objective value 2?]

Problem 3 (Matchings & Matroids) Consider an undirected graph G = (V, E). A subset of edges $M \subseteq E$ covers a subset of vertices $W \subseteq V$ if for all $w \in W$, there is at least one edge $e \in M$, so that $w \in e$. Also recall that a perfect matching $M \subseteq E$ is a matching of G that covers all vertices V of G.

- (a) Graph G = (V, E) is k-regular if each node $v \in V$ has degree d(v) = k. Show that if $k \ge 1$, any k-regular, and bipartite graph $G = (A \cup B, E)$ has a perfect matching. [**Hint:** You may use Hall's theorem, that says that a bipartite graph $G = (A \cup B, E)$ has a matching that covers A, if and only if $|X| \le |N(X)|$ for all $X \subseteq A$.]
- (b) Decide if the following is a matroid or not, by giving a proof or a counterexample.

 $\{W \subseteq V \mid \text{There exists a matching } M \text{ that covers } W\}$

[Hint: Verify if the augmentation property is fulfilled.]

Problem 4 (Minimum Cost Flows) Consider a minimum cost flow problem on a directed network G=(V,E) with edge costs $c:E\to\mathbb{Z}_{\geq 0}$ and edge capacities $w:E\to\mathbb{Z}_{\geq 0}$. Let $f^*:E\to\mathbb{R}_{\geq 0}$ be a minimum cost flow, and π be a set of corresponding node labels such that the reduced cost optimality condition is fulfilled for f^* . That is, for e=(u,v), $c^{\pi}(e)=c(e)-\pi(u)+\pi(v)\geq 0$ for all edges e in the residual graph, $e\in G(f^*)$. Let $G^o(f^*)$ be the subgraph consisting only of those edges of $G(f^*)$ with zero reduced cost, that is, $c^{\pi}(e)=0$.

Show that the following statements are equivalent.

- (a) Flow f^* is not the unique minimum cost flow.
- (b) The graph $G^{o}(f^{*})$ has a directed cycle.

Problem 5 (Approximation Algorithms) Recall the SET COVER problem: We are given a ground set $E = \{1, \ldots, m\}$, a collection of subsets $S_j \subseteq E, j = 1, \ldots, n$, such that $E = \bigcup_{j=1}^n S_j$. Subset S_j has a cost $c_j \geq 0$. The goal is to find a minimum cost cover for E. In other words, find a collection of subsets S_j , $j \in W \subseteq \{1, \ldots, n\}$, so that $E = \bigcup_{j \in W} S_j$, with minimal total cost $\sum_{j \in W} c_j$. Letting parameter $a_{ij} = 1$ if item i is contained in subset S_j (and 0 otherwise), recall the

Letting parameter $a_{ij} = 1$ if item i is contained in subset S_j (and 0 otherwise), recall the following integer linear programming formulation for SET COVER, where variables $x_j \in \{0,1\}$ denote selecting or not selecting subset S_j .

$$\min \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\sum_{j=1}^{n} a_{ij} x_j \ge 1 \qquad \forall i = 1, \dots, m$$

$$x_j \in \{0, 1\} \qquad \forall j = 1, \dots, n$$

The corresponding linear programming relaxation (LP) is obtained by relaxing the $\{0,1\}$ constraints:

$$\min \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\sum_{j=1}^{n} a_{ij} x_j \ge 1 \qquad \forall i = 1, \dots, m$$

$$x_j \ge 0 \qquad \forall j = 1, \dots, n$$

Let f_e be the number of times that an element e appears in the subsets S_j , so $f_e := |\{S_j \mid e \in S_j\}|$. Also, let $f := \max\{f_e \mid e \in E\}$. Assume we have algorithm LP-SOLVER that can compute an optimal solution x^{LP} of linear programming relaxation (LP), in polynomial time.

Give an LP-rounding algorithm A that is an f-approximation algorithm for the SET COVER problem¹. Prove that your algorithm is indeed an f-approximation algorithm.

Problem 6 (Algorithm Design) Give a dynamic programming algorithm to solve the following variant of the Partition problem: Given $\{a_1,\ldots,a_n\}$ with integer $a_i\geq 0$ for $i=1,\ldots,n$, find a subset $S\subseteq\{1,\ldots,n\}$ that minimizes $|\sum_{i\in S}a_i-\sum_{i\notin S}a_i|$. It suffices if you compute the optimal value (not S itself.) Also give a pseudo-polynomial upper bound on the computation time of your algorithm.

¹Your algorithm must use the optimal LP solution x^{LP} and should "round" this fractional solution x^{LP} to a feasible solution $x^A \in \{0, 1\}^n$ of the Set Cover problem.

Problem 7 (True / False Questions) Which of the following claims are true, and which are false? Explain your answers briefly, but precisely. That is, give a **short** proof or a counterexample. For all questions, 1-3 sentences are enough.

- (a) Consider the Maximum Cut optimization problem, which asks to compute a subset C of the nodes of an undirected graph G = (V, E) maximizing the number of edges $|\delta(C)|$ of the cut $\delta(C)$. Claim: If there is an FPTAS (fully polynomial time approximation scheme) for the Maximum Cut optimization problem, then there is a polynomial time algorithm to solve Satisfiability.
- (b) Consider the class **NP**, which is the class of decision problems that can be solved by a nondeterministic polynomial time algorithm. **Claim**: If there is a polynomial time algorithm to solve just one problem in **NP**, then for any problem in **NP** there is a polynomial time algorithm that solves it.
- (c) Consider the MINIMUM (s,t)-Cut problem, where we are given an undirected graph G=(V,E), nodes $s,t\in V$, and an integer number k. It asks if there exists a subset C of the nodes with $s\in C$ but $t\not\in C$, such that the cut $\delta(C)$ induced by C has at most k edges, $|\delta(C)|\leq k$. Claim: There exists a polynomial time reduction from MINIMUM CUT to MAXIMUM CUT.
- (d) Consider the Partition problem. Claim: As the Partition problem has a pseudo polynomial time algorithm, but the Satisfiability problem is strongly NP-hard, there cannot be a polynomial time reduction from Satisfiability to Partition.
- (e) PRIMES is the decision problem "is n a prime?" Claim: PRIMES is in co-NP.

Collection of Decision Problems

- MAXIMUM FLOW Given is a directed graph G=(V,E), with integer edge capacities $w:E\to\mathbb{Z}_{\geq 0}$, and two designated nodes $s,t\in V$, and an integer number k. The problem asks if there exists a feasible (s,t)-flow $f:E\to\mathbb{R}_{\geq 0}$ with value $\mathrm{val}(f)\geq k$. There exist polynomial time algorithms for MAXIMUM FLOW.
- MINIMUM COST FLOW Given is a directed graph G=(V,E), with integer edge capacities $w:E\to \mathbb{Z}_{\geq 0}$, integer edge costs $c:E\to \mathbb{Z}_{\geq 0}$, node balances $b:V\to \mathbb{Z}$, and an integer number k. The problem is to decide if a feasible flow $f:E\to \mathbb{R}_{\geq 0}$ exists such that its total cost fulfills $\sum_{e\in E} f(e)c(e) \leq k$. There exist polynomial time algorithms for MINIMUM COST FLOW.
- MATCHING Given is an undirected graph G = (V, E), and an integer number k. A matching $M \subseteq E$ is a set of non-incident edges. The decision problem asks if there exists a matching M of G with size $|M| \ge k$. Edmonds' blossom shrinking algorithm solves the maximum matching problem in polynomial time.
- Hamiltonian Path / Cycle Given is an undirected (or directed) graph G = (V, E). The problem is to decide if there exist a simple (directed) path / cycle that visits each of the vertices exactly once. All four problems are NP-complete.
- KNAPSACK Given is a knapsack of weight capacity $W \in \mathbb{N}$, and n items with integer weights w_i and integer profits p_i , all nonnegative, and an integer number k. The decision problem asks if there exists $S \subseteq \{1, \ldots, n\}$ with $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} p_i \geq k$? This problem is **NP**-complete.
- Partition Given are n integral, non-negative numbers a_1, \ldots, a_n with $\sum_{j=1}^n a_j = 2B$. The decision problem is to decide if there is a subset $W \subseteq \{1, \ldots, n\}$ such that $\sum_{j \in W} a_j = \sum_{j \notin W} a_j = B$. This problem is **NP**-complete.

- SATISFIABILITY Given n Boolean variables x_1, \ldots, x_n , and a formula F that consists of the conjunction of m clauses C_i , $F = \bigwedge_{i=1}^m C_i$. Each clause consists of the disjunction of some of the variables x_j (or their negation \bar{x}_j), for example $C_5 = (x_1 \vee x_4 \vee \bar{x}_7)$. The problem asks if there exists a truth assignment $x \in \{\text{false,true}\}^n$ such that F = true? This problem is \mathbf{NP} -complete.
- VERTEX COVER Given is an undirected graph G=(V,E), and an integer number k. A vertex cover is a subset $C\subseteq V$ of the nodes exists such that for any edge $e=\{u,v\}\in E$, at least one of the nodes u or v is in C. The problem asks if a vertex cover C exists with $|C|\leq k$. This problem is **NP**-complete.
- MAXIMUM CUT Given is an undirected graph G = (V, E), and an integer number k. The question is to decide if a subset $C \subseteq V$ of the nodes of G exists, such that the cut $\delta(C)$ induced by C, has at least k edges, $|\delta(C)| \geq k$. This problem is **NP**-complete.