Exam Vector Calculus for Applied Physics/Applied Mathematics Bachelor Module 4

Codes 201300164, 201400535 February 23, 2018, 8.45-11.45

- All answers must be motivated and clearly formulated.
- The use of a calculator is not allowed.
- 1. Given the plane S: 2x + 4y 3z = 30 and the point P = (1, 2, 3).
 - a. Give the parametrization of the line L passing through the point P and normal to the plane S.
 - b. What is the shortest distance between the point P and the plane S?
 - c. Given the curve $C: \mathbf{r}_C(t) = \sin(\frac{\pi}{2}t)\mathbf{i} + (2 + \cos(\frac{\pi}{2}t))\mathbf{j} + 3t^3\mathbf{k}$. What is cosine of the angle between the line L and the tangent vector at the curve C at their intersection point $\mathbf{r}_C(1) = (1, 2, 3)$?
- 2. Given the function

$$z(x,y) = \sin(x\cos y)$$

with

$$x(s,t) = t\sqrt{s}$$
 and $y(s,t) = \sin(\sqrt{t})$

- a. Calculate $\frac{\partial z}{\partial t}$. Note, you are **not allowed** to eliminate the x and y variables.
- b. Calculate $\frac{\partial^2 z}{\partial s \partial t}$.
- 3. Investigate if the following series converge or diverge

$$a. \sum_{n=1}^{\infty} \frac{n^3 e^n}{n!}$$
 $b. \sum_{n=1}^{\infty} \frac{\sqrt{n} \sin^2 n}{(n+1)^2 + \log n}$ $c. \sum_{n=3}^{\infty} \left(\frac{3 \log n}{\log(n^2 - 4)} \right)^n$

4. Calculate the integral $\iint_D x dA$ on the domain

$$D := \{(x, y) \in \mathbb{R}^2 : x = r^2 \cos \theta, \ y = r \sin^2 \theta, \ 0 \le \theta \le \frac{\pi}{2}, 1 \le r \le 2\}.$$

1

5. Given the domain

$$D := \{(x, y, z) \in \mathbb{R}^3 : y \le 1 - x^2 - z^2, \ 0 \le y \le 1\}.$$

At the surface S of the domain D the unit outward normal vector is denoted as $\hat{\mathbf{N}}$.

Given the vector field $\mathbf{F}(x, y, z) = (x^2y + \log(1+z^2))\mathbf{i} + y^2\mathbf{j} + z\mathbf{k}$.

- a. Is ${\bf F}$ a solenoidal field? Motivate your answer.
- b. Calculate $\iint_S \mathbf{F} \cdot \hat{\mathbf{N}} dS$.

6. Given the surface

$$S := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 4, y \ge 0, z \ge 0\}.$$

The unit normal vector $\hat{\mathbf{N}}$ at S has positive or zero z-component. Given the vector field

$$\mathbf{F}(x, y, z) = x^2 y \mathbf{i} + z y \mathbf{k}.$$

- a. Calculate curl F.
- b. Is \mathbf{F} a conservative field? Motivate your answer.
- c. Calculate $\iint_S \mathbf{curl} \ \mathbf{F} \cdot \hat{\mathbf{N}} dS$ using Stokes' theorem.
- d. Calculate $\iint_S \mathbf{curl}\; \mathbf{F} \cdot \hat{\mathbf{N}} dS$ without using Stokes' theorem.

Grading

1: 5	2: 6	3: 5	4:60	5: 6	6: 8
1a(1)	2a: (1)	3a: 2	TOB	5a: 1	6a: 1
1b; (2)	2b: 🕉	3b: 💰		5b: 5	6b: (1
1c:(2)	2c: 🕰	2			6c:3
					6d: 3

total 36+4=40 points

 $P = \{(x,y) \in \mathbb{R}^2 : x \neq x \text{ or } P_{x,y} = x \text{ and } P_{y} = x \text{ or } P_{x,y} =$