Module 2, resit Analysis, 201300057 1-2-2017 13:45h - 16:45h

Motivate all your answers.

- 1. Decide which of the following statements are true and which are false. Prove the true ones and provide counterexamples for the false ones.
 - (a) (3pt) If a is an upper bound of a set $E \subseteq \mathbb{R}$ and $a \in E$, then a is the supremum of E.
 - (b) (3pt) Let X be a set and $\{E_{\alpha}\}_{\alpha \in A}$ be a collection of subsets of X, then

$$\left(\bigcup_{\alpha\in A} E_{\alpha}\right)^{c} = \bigcap_{\alpha\in A} E_{\alpha}^{c}$$

(c) (3pt) Let $\{x_n\}$ and $\{y_n\}$ be sequences of real numbers. If x_n converges to zero and $y_n > 0$ for all $n \in \mathbb{N}$, then $x_n y_n$ converges.

2. (a) (3pt) Use the sequential characterization of limits to prove that

$$f(x) = \begin{cases} \sin(\frac{1}{x}) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

has no limit as $x \to 0$.

(b) (4pt) Let f be a function that is continuous in point a and $f(a) \ge 0$. Prove that there exist a $\delta > 0$ such that f(x) > 0 if $|x - a| < \delta$.

3. (5pt) Formulate Rolle's Theorem and prove this theorem.

4. (a) (2pt) Formulate Taylor's Theorem.

- (b) (2pt) Let $f(x) = \log(x)$ and $n \in \mathbb{N}$. Find the Taylor polynomial $P_n := P_n^{f,1}$.
- (c) (3pt) Prove that if $x \in [1, 2]$, then

$$|\log(x) - P_n(x)| \le \frac{1}{n+1}$$

TURN PAGE OVER

5. (a) (3pt) If f is increasing on [a, b] and $P = \{x_0, x_1, \dots, x_n\}$ is any partition of [a, b], prove that

$$\sum_{j=1}^{n} (M_j(f) - m_j(f)) \Delta x_j \le (f(b) - f(a)) \|P\|.$$

- (b) (3pt)
 - Prove that if f is increasing on [a, b], then f is integrable on [a, b].
- (c) (2pt)
 - Prove that if f is monotone on [a, b], then f is integrable on [a, b].

Total: 36 points

b= Xn ZXo Za Xh26 X6=9 Xn- Ko < f(b) - flag NVNZAY $\frac{||P|| < \delta}{\delta} = \frac{\varepsilon}{F(\delta) - F(a)}$ $M_{T}(B) - m, H_{J}$ U(F,P)-L(F,P)<E $U(f, P) = \sum_{j=1}^{n} M_j(F) \Delta x_j$