Faculty of Electrical Engineering, Mathematics and Computer Science Applied Finite Elements, Mastermath EXAM MAY 22, 2017: 13:30 – 16:30 O'Clock @ BBG, room 169, Utrecht University

- 1 We consider bi-linear quadrilateral elements to solve a finite-element problem. In the element we define bi-linear basis functions $\phi_i(\mathbf{x})$ corresponding to the 4 vertices, with coordinates \mathbf{x}_p , $p \in \{1,2,3,4\}$, which are used to approximate the solution. The basis-functions are defined through $\phi_i(\mathbf{x}_j) = \delta_{ij}$.
 - a In this part of assignment 1, we use a quadrilateral element with vertices $\mathbf{x}_1 = (1,0)$, $\mathbf{x}_2 = (0,1)$, $\mathbf{x}_3 = (-1,0)$ and $\mathbf{x}_4 = (0,-1)$, and we define the bi-linear basis functions according to $\phi_i(x,y) = a_i + b_i x + c_i y + d_i x y$.
 - i Use the given coordinates for the vertices of the quadrilateral to show that for basis function ϕ_1 , we have

$$a_{1}+b_{1} = 1,$$

$$a_{1}+c_{1} = 0,$$

$$a_{1}-b_{1} = 0,$$

$$a_{1}-c_{1} = 0.$$
(1)

- (1 pt)
- ii Use the above result to demonstrate that the form $\phi_i(x, y) = a_i + b_i x + c_i y + d_i x y$ cannot be used. (2 pt)
- b Since the form $\phi_i(x, y) = a_i + b_i x + c_i y + d_i x y$ cannot be used, we use an isoparametric transformation, which is defined by

$$(T): \mathbf{x}(s,t) = \mathbf{x}_1(1-s)(1-t) + \mathbf{x}_2s(1-t) + \mathbf{x}_3st + \mathbf{x}_4(1-s)t, \text{ with } s,t \in [0,1],$$

to map the quadrilateral onto a reference square.

i Consider the reference element $\tilde{e} = (0,1) \times (0,1)$, show that the Newton–Cotes Rule applied to a unit square, \tilde{e} , is given by

$$\int_{\tilde{e}} g(s,t)d\Omega = \frac{1}{4} \left(g(0,0) + g(1,0) + g(1,1) + g(0,1) \right).$$
⁽²⁾

(2 pt)

ii The transformation (T) can be rearranged into

$$\mathbf{x}(s,t) = \mathbf{x}_1 + (\mathbf{x}_2 - \mathbf{x}_1)s + (\mathbf{x}_4 - \mathbf{x}_1)t + (\mathbf{x}_1 - \mathbf{x}_2 + \mathbf{x}_3 - \mathbf{x}_4)st$$

Show that the determinant of the Jacobian of the transformation is given by

$$\frac{\partial(x,y)}{\partial(s,t)} = (x_2 - x_1 + A_x t)(y_4 - y_1 + A_y s) - (y_2 - y_1 + A_y t)(x_4 - x_1 + A_x s),$$

with $A_x = x_1 - x_2 + x_3 - x_4$ and $A_y = y_1 - y_2 + y_3 - y_4$, and compute the Jacobian on the four vertices that were given in assignment 1a. (1 pt)

- iii Compute the Jacobian matrix of the inverse transformation. Evaluate the inverse Jacobian matrix on vertex \mathbf{x}_1 given in assignment 1a. (2 pt)
- c What is the size of the element matrix for an internal quadrilateral element if a single partial differential equation is solved? Motivate the answer. (1 pt)
- 2 Given the following functional, where u(x, y) is subject to an essential boundary condition

$$J[u] = \int_{\Omega} \sqrt{1 + ||\nabla u||^2} - uf(x, y) \, d\Omega,$$
$$u(x, y) = u_0(x, y), \qquad \text{on } \partial\Omega_1,$$

where Ω is a bounded domain in \mathbb{R}^2 with boundary $\partial \Omega = \partial \Omega_1 \cup \partial \Omega_2$, where $\partial \Omega_1$ and $\partial \Omega_2$ are non-overlapping segments. We are interested in the minimiser for the above functional:

Find *u*, subject to $u = u_0(x, y)$ on $\partial \Omega_1$ such that $F(u) \leq F(v)$ for all *v* subject to $v = u_0(x, y)$ on $\partial \Omega_1$.

- a Derive the Euler-Lagrange equation (PDE) for u(x,y), and give the boundary condition(s) on $\partial \Omega$. (2 pt)
- b Derive the Ritz equations.

We approximate the solution to the minimisation problem by Ritz' Method. Note that the system of equations is non-linear. In the Picard fixed point method, we use the solution from the previous iteration for the nonlinear part. Further we use piecewise linear basis functions

- c Give the element matrix and vector, as well as the boundary element matrix and vector based on linear triangular elements. You may use $|\Delta_e|$, being two times the area of element *e*, and $\frac{\partial \lambda_i}{\partial x} = \beta_i$ and $\frac{\partial \lambda_i}{\partial y} = \gamma_i$ for the basis functions. Further, Newton-Cotes numerical integration should be used if it is not possible to evaluate the integrals exactly. (Newton-Cotes numerical integration reads as $\int_e g(x,y) d\Omega \approx \frac{|\Delta_e|}{6} \sum_{p \in \{1,2,3\}} g(x_p, y_p)$, where (x_p, y_p) represent the coordinates of the vertices of triangle *e*, and as $\int_{be} g(x,y) d\Gamma \approx \frac{|be|}{2} \sum_{p \in \{1,2\}} g(x_p, y_p)$, where (x_p, y_p) represent the coordinates of the vertices of the vertices of line segment *be*.) (2 pt)
- 3 We consider the following boundary value problem for u = u(x, y) to be determined in $\Omega \subset \mathbb{R}^2$ (bounded by $\partial \Omega$):

$$\begin{cases} -\nabla \cdot (D(x,y)\nabla u) = f(x,y), & \text{in } \Omega, \\ u = g(x,y), & \text{on } \partial \Omega, \end{cases}$$
(3)

(1 pt)

(1 pt)

- a Derive the weak formulation in which the order of spatial derivatives is minimized. (2 pt)
- b Derive the Galerkin Equations to the weak form in part a.
- c We use linear triangular elements to solve the problem. All answers may be expressed in terms of $|\Delta_e|$ being twice the area of element *e*, and in $\frac{\partial \lambda_i}{\partial x} = \beta_i$ and $\frac{\partial \lambda_i}{\partial y} = \gamma_i$. Use the Newton-Cotes numerical integration method if a numerical integration method is needed.
 - i Compute the element matrix and element vector for an internal triangle. (2 pt)
 - ii Compute the element matrix and element vector for a boundary element. (1 pt)

Exam Grade =
$$\frac{\text{Sum over all credits}}{2}$$