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What is friendship paradox and how to explain it? How will friendship paradox manifest
itself in a scale-free network with a power law degree distribution?

The friendship paradox was first introduced by Scott L. Feld in 1991. The phenomenon that Feld described
was that your friends tend to have more friends than you do, in general. This paradox is based on the
fact that people tend to compare their popularity (expressed in their number of friends) to that of their
friends. We will use the provided example from the course to illustrate the nature of this paradox.

INSERT FIGURE HERE

First of all, we assume a finite graph G = ([n], E). We can define the average degree of a node ¢ in graph
G as
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and the average degree of the neighbour j of a node ¢ as
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We will use these notations to rewrite [2| and to show the result of the friendship paradox:
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What are the definition and interpretation of convergence in distribution and convergence
in probability? Find an example related to one of the random graph models that we
studied, where: convergence in probability occurs; convergence in distribution occurs but
convergence in probability does not.

Definition 1) Convergence in distribution. A sequence X,, of random variables converges in distri-
bution to a limiting random variable X when

lim P(X, <z)=P(X <z)=F(x)

n—oo

for all points of continuity of F'(x), with x € R.

Definition 2) Convergence in probability. A sequence X, of random variables converges in proba-
bility to a limiting random variable X when

lim P(|X, — X|>¢) =0

n—o0
for all € > 0.
We can also conclude that convergence in probability implies convergence in distribution since
P(X,<z)<P(X<z+e+P(X,—X|>¢) (3)
and
PX<z—¢e) <PX,<z)+P(|X,—X|>¢€)
Combining both equation we achieve
P(X<2-0) = P(Xp—X|>) S P(X,<2) S P(X a4+ P(Xy—X|>¢)  (4)
Taking the limit n — oo for all component of the inequality then gives us

P(X<xz—¢€) < lim P(X, <2)<PX<z+e¢) (5)

n—oo

due to convergence in probability and so we conclude

lim P(X, <z)=P(X <) (6)

n—roo

In this course we have encountered a couple of random graph models that show convergence in probability.
In



Explain how to solve Exercise 3.3. Which theoretical results do you use? What implication
of this results have we seen in one of the random graphs models?

Exercise 3.3. We assume a probability distribution (pg)r>o that is given by

pr = b(1 — p)Ft for k=1,2,...
{ (1-p) -

po=1-0/p for k=0

so that, for b = p the offspring distribution has a geometric distribution with success probability p. Show
that the extinction probability 7 is given by n = 1 if u = E[X] = b/p? < 1, while, with the abbreviation
q=1—pand for b/p*> > 1, n=(1—-pup)/q.

More generally, let 1 and sg be the two solutions to Gx(s) = s. Show that so = (1 — up)/q.

Solution. First of all, we need to determine Gx(s). That will be

Gx(s) = E[s"]
= Zpisi
i=0

=1- b + Zb(l —p)its
P

b bs

= 1 _ =
p + 1—gs
so that
, :b(lqu)+bqs :ﬂ
X (1-gs8)? ls=1 p?
[chain rule]

Before we finish our proof, we will need Theorem 3.1 to support our claim. This theorem says the
following.

Theorem 3.1 For a branching process with iid offspring X, n = 1 when E[X] < 1, while n < 1 when
E[X] > 1. Further, n = 1 when E[X] = 1 and P(X = 1) < 1. The extinction probability 7 is the
smallest solution in [0,1] of n = Gx(n) with s — Gx(s) the probability generating function of the
offspring distribution X, i.e.

Gx(s) = E[s"]
Hence, the result that follows is n = 1 if u = b/p? < 1. Now when b/p? > 1, then n < 1 is the solution of
n = Gx(n), which will then be

b b
n=1—--+ U
p l1—qn




Explain the random walk perspective to the total progeny of a branching process. Can you
give examples of results that have been obtained in the course, using this perspective?

First the definition of the total progeny of a branching process and random walk will be defined.

Definition 3) Total Progeny. The total progeny can be interpreted as the number of total individuals
in a branching process and is defined as

r-3%z, (®)
n=0

where Z,, is the number of individuals in the n-th generation.

Definition 4) Random walk. Assume X7, X5, ... be independent and identically distributed random
variables with the same distribution as X1 (offspring distribution). We can define the sun S; by the

recursion
%=1 (9)
Si:Sifl"f‘Xi—1:X1+...+Xi-‘r(i—1)

The idea of considering the random walk in a branching process is that we can apply breadth-first-search
in order to determine the number of active nodes S; at time step ¢, which is equivalent to counting all
the nodes. The algorithm is performed as follows:

t = 0; Start with one active node
t = 1; Make the offspring of this node active and the first node inactive

t > 1; Pick one active node, make its offspring active and make chosen node inactive

= W o=

t = tenq; All nodes are inactive

We now can apply this principle on the random walk. This will give us the following results for S;:

So=1
S1=5+X; -1 (10)
Sy =851 +X:—1

and hence BFS is a random walk with increments X; — 1.

We know that the process stops when there are no active nodes, that is when S; = 0. This is equal to
the total progeny for T = t, since the branching process is extinct. This is due to the fact that all nodes
have been made active and after that inactive. That way one has encountered ¢ nodes.

We have seen quite some results that have been acquired due to this principle, namely the following.

Theorem 3.7 (Duality principle for branching processes.)

Let (pr)k>0 and (p))r>0 be a conjugate pair of offspring distributions. The branching process with dis-
tribution (py)ir>o0 conditioned on extinction, has the same distribution as the branching process with
offspring distribution (p},)r>o0-

Proof. The proof is based on showing that for the finite history H = (x1,...,2;) the probability
P(H = bla) = II!_,p,, is the same for both branching processes with the before mentioned probability
distributions, where the first one is conditioned on extinction.

Another convenient feature of the random-walk perspective for branching processes is that it allows one
to study what the probability of extinction is when the family tree has at least a given size.

Theorem 3.8 (Extinction probability with large total progeny.)
For a branching process with iid offspring X having mean p = E[X] > 1

e—Ik
P(k<T <o) <

— eI



where the exponential rate I is given by

I =supt —log(E[e'¥]) >0
£<0

This theorem can be reformulated by saying that when the total progeny is large, than then the branching
process will survive in high probability. There must be noted that it is not assumed that p < occ.

MORE?



What is the expected number and the limiting distribution of the number of k-cycles in the
ER, (%) random graph? Compute the expectation. Provide a conjecture for the limiting
distribution and explain the intuition behind it. What methods and theorems will you use
to prove this conjecture?

A k-cycle in an ER-graph are k vertices connected in a closed chain. An example of a k-cycle is a triangle
(3-cycle) or a square (4-cycle) in a graph. The expected number of k-cycles in an ER,, (%) random graph
are

E[# k-cycles] = (Z) (k _2 1! <%)k (11)

Proof. Assume that X}, is the random variable denoting the number of k-cycles in ER, (2). Then

DING



How large is the size of the largest connected component in the FR, (%) random graph
in the subcritical regime? How is this related to branching processes? Explain the phase
transition phenomenon.

First of all, we will provide equivalence relations that we will use for the definition of the component of
a graph. Say i,j € E,, then:

® i1
e | <— j implies j <— ¢
e i+ jand j<— kimply i +— k
Now we can provide the definition of a connected component in a graph.
Definition X) Connected component. The connected component containing node v or a cluster of

v is given by

Cvy={zen]| v =z} (12)

The size of the connected component is denoted by |C(v)|, which denotes the number of vertices connected
to v by an occupied path. Now we provide a definition for the size of the largest component.

Definition X) Size of largest component. The largest connected component C,,q. is equal to any
cluster C(v) for which |C(v)| is maximal, so that

|Cmax| = Inax |C(U>‘
v€E[n]

We consider a subcritical regime, meaning that p < 1. Since it is rather difficult to derive the exact size
of the largest component in an FR,, (%) graph, we can first derive the upper and lower bound for the
largest component size. For this we will make use of Theorem 4.4 and 4.5.

Theorem 4.4 (Upper bound on largest subcritical component) Fix A < 1. Then, for every

a > %, there exists a § = §(a, A) > 0 such that

Py(|Crmaz| > alogn) = O(n~%!")

Theorem 4.5 (Upper bound on largest subcritical component) Fix A < 1. Then, for every
a < %, there exists a § = d(a, A) > 0 such that

P)\(|Cma93| < alOg n) = O(n—ddta)

When combining these two theorems we can draw the conclusion that can derive a convergence in prob-
ability:

|Cma:r‘ P 1
H

logn I

as n grows very large.

In general we can view an ER,, (%) graph as a branching process with Poiss(\), where the average number
of offspring is denoted as A. In that case, we encounter two situations for the value of A:

e )\ < 1; in this case the branching process will become extinct, due to the fact that we will have
many small sized components in the ER-graph

e )\ > 1; the branching process will survive forever with a positive probability, we will see that the
E R-graph will have one giant component

This phenomenon can be defined as the phase transition phenomenon and it refers to the fact that there
is a sharp transition in the largest component.



How large is the size of the largest connected component in the FR, (l) random graph

n

in a supercritical regime? How is this related to branching processes? Explain the phase
transition phenomenon.

In a supercritical regime we have that p > 1. The main result that can be derived for this case is the
law of large numbers for the size of the maximal component in an ER—graph (stated in Theorem 4.8).
Write (\ = 1 — ) as the survival probability of a Poisson branching process with mean offspring A. Note
that ¢, > 0, since we have that A > 1. Theorem 4.8 now states that there exists one giant component.

Theorem 4.8 (Law of large numbers for giant component) Fix A > 1. Then, for every v € (3,1)
there exists a § = (v, A) > 0 such that

P)\( ‘Cmaz| - C)\Tl > nV) = O(nié)

We can interpret the theorem as follows. A vertex has a large component with probability (5. There-
fore, at least in expectation, there are roughly (\n vertices with large connected components. Theorem
4.8 implies that almost all these vertices are in fact in the same component, which is called the giant
component (since the order of the probability is very very small).

USE PICTURE WITH EXAMPLES



Consider a network of size n that has a power law degree distribution with exponent 7 .
What can you say about mean degree, variance of the degree, and the maximal degree?
What consequences it has for the random graph models?

Power-law: relationship between two variables when one is proportional to a power of the other. Power
laws are related to 80/20 rules (wealth among people, 20 percent of people earn 80 percent of total
income).

Denote the random variable X to be the degree of a node in a real life network. We can derive the power
law as:

PX=k)=py=c-k7

where py, is the fraction of nodes of degree k, ¢ a constant and 7 € (2,4). This power law implies that
rare event will indeed happen (tries to capture non-normal behaviour, ex. Project X Haren). The power
law distribution is also known as the Pareto distribution.

Sometimes it is possible to use a slowly varying function L(z) instead of a constant to describe a certain
phenomenon:

Definition X) A function L(z) is slowly varying if for all ¢ > 0,

im L(tz)
T—00 L(a:)

For the mean and variance we need to consider the fact that 7,2, P(X = k) =1, hence .2, p =

> ek, €+ k77 = 1. Now we will use this in order to derive the mean and the variance. We must use that
7 > 1, otherwise convergence will not hold in this case.

Assume X has a Pareto distribution, then

E[X]:ik'pk:ik'C'k_T:ic.k_(T_l) (13)

k=ko k=ko k=ko
EX? =Y kK pp=> Kok => ck (14)
k=ko k=ko k=ko

(15)

So we see that there also must hold that 7 > 2, hence we have derived a tighter lower bound for the
power 7. Now we can compute the variance, which will be

oo o0
2
var(X) = B[X?] - (B[X]? = Y ¢ k=7 - ( 3 c.k—(f—l))
k=ko k=ko
In order for F[X?] < co we need to have that 7 > 3.

We cannot derive the maximal degree easily in a real life network. Hence we will approach the derivation
of the maximal degree heuristically. For the maximal degree we need to consider ordered statistics first.

Definition X) Ordered statistics. Let Xi,...,X,, be independent copies of X. Then
XpsXgs...sXm
are ordered statistics where Xy is the smallest and X, is the largest.

Assume now as the heuristic argument that P(X > @) & % Applying the Pareto distribution (which
says that

> bl
1-F(X)=P(X>az)= Y c~k’7xﬁ
k=z+1

holds)
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Why is ER random graph not a suitable model for social networks? Give as many reasons
as possible, formulated in mathematical terms.

First of all, we need a definition for the Erdés-Renyi graph, in order to determine why it is not suited to
model social networks.

For an ER-graph holds:
e We have a known finite set of nodes V = {1,...,n} = [n]
e The graph G = (V, E) is undirected
e The edges are placed with probability P(ij € E) =p = %, Vi,j € [n] and i = neqj

e An edge is present or not independently from other edges (the number of edges has a Binomial
distribution)

Now we can explain properly why the ER-graph is not suited to model social networks.

* The edge probabilities are all equal.

Since all edges have the same edge probability p, the FR-graph is not suited as a model for a social
network; this is e.g. due to preferential attachment. In a social network you are likely to know friends
of your friends or popular people instead of a random person who you have not any connection with.
Hence, we would like to introduce some type of probability for a random graph that is dependent on the
weight of a node (a.k.a. the ‘popularity’ of a person). Therefore, we would like to consider a generalized
random graph (GRG), where

W; W5

—_ 1

P =Dpij =

with 4,5 € [n], w; the weight of a graph and I, = Y, w;

* Degree sequence is close to a Poisson distribution.

At first sight, this might not seem as a big problem. However, a Poisson distribution has thin tails as
we have seen in Theorem 4.4 and 4.5. Also, its moment generating function is finite. When we consider
the degree sequence for n = 10.000 and n = 1.000.000 we will see that applying the log-log scale on these
networks will result in a very small edge probability when the degree starts to increase (for A = 1,10).
We can conclude that when power-law degree sequences are observed, we cannot use the ER-graph.

* Clusters in a graph. We define the clustering coefficient as

CCq = 17
6= B a7)
where

Ag = 6 - number of triangles in G = Z 1{ij, ik, jk occupied} (18)
i,7,k€[n]
Ag = 2 - number of wedges in G = Z 1{ij, jk occupied} (19)

i,5,k€[n]

WORK THIS OUT

11



How is Generalized Random Graph model (GRG) defined and what is the motivation behind
this model? What can you say about the average degree of each vertex? How this relates
to the original motivation of the GRG?

A generalized random graph model can be written as GRG(w), where w = (wy, .. . ,w,) a weight sequence.
This model has an edge probability of

W;W;

=pij = — 20
p p] ln+wiwj ( )

with 4,j € [n], w; the weight of a graph and I, = >_._, w;. This means that we can assign weights

to all vertices. By doing so, you can have a large variability in the degrees of the vertex, which makes
it well-suited for real-life networks. Given that @ edges are independent, if the weights of nodes are
unknown, then the edges are dependent.

First, we define the degree of a node 4 in the GRG(w) model:

n

Di= > 1{ij€ E,} (21)

=15
The degree here is Poisson distributed with parameter w;.

Now we can derive the average degree of a node in the GRG(w) model:

E[D;] = Z L-pij (22)
j=1,j7#i
“ W; W4
= e (23)
JEr g b Wi
= w; — (24)
jErgg I 0
"L w, 1
= w; Z TJW (25)
J=1,3#i " In
< w; —J 26
swi 3L (26)
Jj=1,j#i

As n — oo we will see that the average degree will be approximately w;.

The total number of edges is given in Theorem 6.6 of the book.

Theorem 6.6 (Total number of edges in GRG(w))

Assume that the regularity conditions (a) and (b) of Theorem 6.4 hold. Then

1 P

~E(GRGy(w)) & SE(W)

N | =

where |E(GRG(w))| is the expected total number of edges and W the random variable of the vertex
weight.

Since the distribution of degrees in GRG(w) is dependent on the vertex weight, we can say that in
probability the degrees and weights are approximately distributed the same. The intuition behind this,
is that the number of edges can be expressed using the degrees:

2|E(GRG(w))| = Z D; = nE(W) + o(n) (27)

12



How is the mixed Poisson distribution defined? What does this mean that the limiting
degree distribution in the GRG is mixed Poisson? How this relates to the original motivation
of behind the GRG?

13



What is the motivation behind the regularity conditions (a)-(c) for the GRG and the Con-
figuration Model (CM)? What is the meaning of these conditions? What can you say about
these conditions when the weights in GRG or the degrees in C'M are independent identically
distributed random variables drawn from a power law distribution?

First we will denote the regularity conditions.

Condition 6.4 (Regularity conditions for vertex weights). There exists a distribution function F
such that, as n — oo, the following conditions hold

a. Weak convergence of vertex weight; As n — oo
d
w, — W

where W, and W have distribution functions F;, and F respectively. Equivalently, for any = for
which x — F(z) is continuous,

lim F,(z) = F(x)

n—roo

b. Convergence of vertex weight;

lim E[W,] = E[W]

n—oo

where W,, and W have distribution functions F,, and F', respectively. Further, we assume that
E[W] > 0.

c. Convergence of second moment vertex weight.

lim E[W}] =E [W?]

n—oo

For the GRG(w) we want to identify the asymptotic degree distribution, i.e. we aim to prove that
the proportion of vertices of degree k approaches a limit when we let the size of the network n tend
to infinity. The degree distribution can only converge when the vertex weights are sufficiently regular
(therefore we are talking about regularity conditions), which imply convergence of the degree distribution
in the GRG(w). So we get the following:

a. Guarantees that the weight of a typical vertex is close to a random variable that is independent of
n.

b. Implies that the average weight of the vertices in GRG(w) converges to the expectation of the
limiting weight variable. In turn, this implies that the average degree in GRG(w) converges to the
expectation of the limit random variable of the vertex weights.

c. Ensures the convergence of the second moment of the limiting weight variable.

When the weights in the weight sequence w are realisations of iid random variables themselves, the
function Fj, is also a random distribution function. This is then called the empirical distribution function
of the random weights. Moreover, E(W),,) is then to be interpreted as % > ien] Wi> which itself is random.
From this we may conclude that

Po(Wn <) L P(W < 2) = F(z) (28)

holds for each point of continuity « and P,, denotes the conditional probability given the (random) degrees
(wi)icpn). Similarly we can say that conditions (b) and (c) can also be replaced by the same conclusion
regarding convergence in probability.

We can deduce the same reasoning for the Configuration Model. We get the following regularity condi-
tions:

14



a. Weak convergence of vertex weight; There exists a distribution function F' such that
d
D, — D
where D,, and D have distribution functions F,, and F, respectively. Equivalently, for any x

lim F,(z) = F(x)

n—roo

Further we assume that F'(0) =0, ie. P(D>1)=1

b. Convergence of vertex degrees;

lim E[D,] = E[D]

n— oo

where D,, and D have distribution functions F;, and F, respectively, from (a).

c. Convergence of second moment vertex degree.

lim E[D?] =E [D?]

n—oo

where again D,, and D have distribution function F,, and F' from part (a), respectively.

We note that, since the degrees d; only take values in integers, so does D,, and therefore so must the
limiting random variable D. As a result, the limiting distribution function F' is constant between integers
and makes a jump P(D = z) at z € N.

When a graph has random degrees, we can change the conditions in the same fashion as for GRG(w)

with a convergence in probability. Moreover, we could also define the CM (d) in terms of the number of
vertices with fixed degrees, namely

ng =Y 1{d; =k} (29)

i€[n]

which denotes the number of vertices with degree k. Then clearly, apart from the vertex labels, the degree
sequence is uniquely determined by the sequence (ng)g>0.

NOG WAT TOE TE VOEGEN?
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Why a Generalized Random Graph, conditioned on the degrees, is sampled uniformly at
random from all simple graphs with these degrees? Compare to a similar result for the
Configuration Model.

[Build up to theorem 6.15, p199] First we need to consider when GRG(w) is conditioned on its degrees.
We then get that

X = (Xijhzi<>n (30)
X;; = 1{ij € E} (31)
The first one has length n(n — 1).
Define now that
PX;j=1)=1-P(X;; =0)=p;; <1 (32)

Using this information, consider the probability P(X = ), then
(just rewrite using the odds ratio and def of pij and qij)

) — Tij 1=
P(X =z)= H D4y
1<i<i<n
Tij

_ H "ij 1
(]. +Tij)zij (1 +T’ij)1_rij

1<i<j<n

Tij
- 10 5
N 1+ 7y,
1<i<j>n T T

1 oy
= H 1 H Tij

o
1<i<j<n T 1<i<j<n

1 o
I e M e

= U, =
1<i<j<n 1<i<j<n

We now see that the left multiplication does not depend on z and is equal to G~1(u)
BLABLA
By using Proposition 7.15 and Theorem 6.15, we see that GRG(w) conditionally on its degrees,and

CM,,(d) with the same degrees conditioned on producing a simple graph, are equal in distribution. This
partially explains the popularity of the configuration model: Some results for GRG(w), and sometimes
even the Erdos-Renyi random graph, are more easily proved by proving the result for the configuration
model and conditioning on the degree sequence, and using the fact that the degree distribution of the
Erdos-Renyi random graph is very close to a sequence of independent Poisson random variables. We will

see that a relation between GRG and CM is defined in Theorem 7.18 and is stated as follows

Theorem 7.18 (Relation between GRG(w) and CM,(d)) Let D; = >

vertex 7 in GRG(w) and CM,,(d) and let D = (D;);c[n). Then

j€ln] X;; be the degree of

P(GRGn(w) =G | D =d) = P(CM,(d) = G | CM,(d) simple ) (33)

16



Why CM(d) for a given degree sequence d, conditioned on the graph being simple, is sampled
uniformly at random from all simple graphs with the given degrees?

17



Under conditions (a)-(c), what is the probability that Configuration Model produces a
simple graph? How can you explain this result? For which degree distributions is condition
(c) violated, and what are the consequences of this for the probability that the resulting
graph is simple?

18



Assume you have a dataset that contains a list of all edges in a real-life network. The real-
life network is a simple graph. Consider a degree sequence of this network. You would like
to sample a graph uniformly at random from a set of all graphs with this degree sequence.
Discuss advantages and disadvantages of Configuration Model and Generalized Random
Graph.

We will consider both models in order.

GRG

In a GRG we extend the ER-graph model to include a higher amount of inhomogeneity. This means that

the ER and GRG model are similar, but we have added weights to the nodes of the latter. In a GRG

model the edge probability of the edge between vertices ¢ and j for i # j is defined as
W;W;

= T——— 34
p] ln+wiwj ( )

AND CONDITIONS

When we sample a graph uniformly at random from a set of all graphs with this degree sequence, we
know that with the GRG model all graphs with the same degree sequence are equally likely. However,
it is not possible to set the degree beforehand, since the weights do not correspond one-to-one with the
degrees. Hence, there will always be a variability in the degree sequence.

CM

In the CM model the degrees of the vertices are fixed beforehand, unlike for the GRG model, and when
leaving the constraint that we have a simple graph those degrees remain the same. Therefore you can
sample an exact degree sequence. However, with the erased configuration model, the degrees will change
after erasing some eges. This makes the degree sequence slightly different, but we can proof that it is not
a lot of difference.

19



What is the motivation behind the Preferential Attachment Model? Define the model,
solve Exercises 8.2-8.4, and explain intuitively why this model will result in a power law
degree sequence.

In a PA-model a new node is added to a network and connects to another node with a probability
proportional to the degree of the old node (we take the power-law into consideration here). We denote a
PA-model as (PA?’a)tzl, where we have ¢ vertices and each vertex has m outgoing edges. Moreover, we
can define the probability that the new vertex vgi)l is connected to an old vertex vgl) (for m =1): SEE
DEF 8.2.1

Exercise 8.2
Fix m = 1. Verify that D;(¢t) > 1 for all ¢ and ¢ with ¢ > ¢, so that D;(¢t) + 6 => 0 for all § > —1.

Since at every time step t a node gets connected to another node or to itself, the degree of node i at time
t fort > i is always D;(t) > 1. Therefore D;(t) + 6 => 0 for all § > —1. This is also necessary for the
probabilities: otherwise we won’t have any edges between nodes and only self-loops. When we only have
self loops, we can see that the degree of every node is 1.

Exercise 8.3
Verify that the probabilities in 8.2.1. sum up to one.

At time t + 1 there are t + 1 possibilities for a node to connect to either itself or other t nodes. Hence

t+1 t

; Pvipr = vi) = 12+ 61):(;1 ) g 12 +D§§t)++(15+ ) (35)
Since this is the case for m = 1, we can say that the total sum of all degrees is 2¢. Therefore
140 zt: Di(t)+6 1+ L t2+9) (36)
t2+9)+(1+9) i:lt(2+5)+(1+6) t240)+(1+0) t2+0)+(1+9)
_t2+0)+(1+0) (37)

S t2+0)+(1446)

Exercise 8.4
Prove that the total degree of (PA;"’é)tzl equals to 2mt.

Since for a PA-model all nodes are connected to themselves or to another node with m edges, we know
that the total degree of all nodes together is 2mt, since every edge is counted twice.

20



What is the limiting distribution of the degrees in the Preferential Attachment Model?
Provide a heuristic mean-field argument, based on the recursive equations for p;; - the
fraction of vertices with degree k at time t.

In the PA-model a new node arrives to a network and connects to another node with a probability that
is ‘roughly’ proportional to the degree of the old node (rich-get-richer) idea.

Define m to be the number of connections of a newly arriving node (out degree). Furthermore we define

pra =7 YD) = k) (38)
i=1

to be the fraction of nodes with degree k at time ¢ (¢ is also the number of vertices at time ¢). To use the
heuristic argument we will use model B of the PA-model defined in the book. We then get that

- 1 2mt
Z kprt = 7 - total degree = % =2m (39)
k=m

We can then apply the ‘Master equation’, which denotes the change in vertices of degree k

SEE NOTES
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